論文の概要: Engineering Quantum Error Correction Codes Using Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2409.13017v1
- Date: Thu, 19 Sep 2024 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:14:24.798554
- Title: Engineering Quantum Error Correction Codes Using Evolutionary Algorithms
- Title(参考訳): 進化的アルゴリズムを用いたエンジニアリング量子誤り訂正符号
- Authors: Mark Webster, Dan Browne,
- Abstract要約: 量子誤り訂正と量子誤り訂正符号の使用は、実用的な量子コンピューティングの実現に不可欠である可能性が高い。
与えられたエラーモデルに対して最適な安定化器符号を求める新しい進化的アルゴリズムを提案する。
この研究の一環として、量子誤り訂正符号の距離を求める進化的アルゴリズムQDistEvolを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction and the use of quantum error correction codes is likely to be essential for the realisation of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes which are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm which searches for an optimal stabiliser code for a given error model, number of physical qubits and number of encoded qubits. We demonstrate an efficient representation of stabiliser codes as binary strings -- this allows for random generation of valid stabiliser codes, as well as mutation and crossing of codes. Our algorithm finds stabiliser codes whose distance closely matches the best-known-distance codes of codetables.de for n <= 20 physical qubits. We perform a search for optimal distance CSS codes, and compare their distance to the best-known-codes. Finally, we show that the algorithm can be used to optimise stabiliser codes for biased error models, demonstrating a significant improvement in the undetectable error rate for [[12, 1]] codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.
- Abstract(参考訳): 量子誤り訂正と量子誤り訂正符号の使用は、実用的な量子コンピューティングの実現に不可欠である可能性が高い。
量子デバイスのエラーモデルは多種多様であるため、特定のエラーモデルに適した量子符号の方がはるかに優れた性能を持つ可能性がある。
本研究では,与えられた誤りモデル,物理量子ビット数,符号化量子ビット数に対して最適な安定化器符号を求める新しい進化的アルゴリズムを提案する。
私たちは、バイナリ文字列としてスタビライザコードの効率的な表現を実証します。これは、有効なスタビライザコードのランダムな生成と、コードの突然変異と交差を可能にします。
我々のアルゴリズムは, n <= 20 個の物理量子ビットに対して, Codetables.de の最もよく知られた距離符号との距離が近い安定化器符号を求める。
最適な距離CSS符号の探索を行い、その距離を最もよく知られた符号と比較する。
最後に,[12, 1]]符号に対する検出不能な誤り率と,同じパラメータを持つ最もよく知られた距離符号とを比較検討することにより,バイアス付き誤りモデルに対する安定化器符号の最適化が可能であることを示す。
この研究の一環として、量子誤り訂正符号の距離を求める進化的アルゴリズムQDistEvolを導入する。
関連論文リスト
- Breadth-first graph traversal union-find decoder [0.0]
我々はその実装を単純化し、潜在的な復号速度の利点を提供するUnion-findデコーダの変種を開発する。
これらの手法が、非トポロジカル量子低密度パリティチェック符号のデコードにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2024-07-22T18:54:45Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
量子量列挙子を最も一般的な形式で計算するための最初のテンソルネットワーク法を提供する。
非(Pauli)安定化器符号の場合、これはコード距離を計算するのに最適なアルゴリズムである。
これらの列挙子は論理的誤り率を正確に計算するために使用することができ、従って任意の単一キュービットやキューディットのエラーチャネルに対してデコーダを構築することができる。
論文 参考訳(メタデータ) (2023-08-09T18:00:02Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Quantum variational learning for quantum error-correcting codes [5.627733119443356]
VarQECは、ハードウェア効率の良い符号化回路で量子コードを探索するノイズ耐性変動量子アルゴリズムである。
原則として、VarQECは、添加物、非添加物、非退化物、純物、不純物など、任意のエラーモデルに対する量子コードを見つけることができる。
論文 参考訳(メタデータ) (2022-04-07T16:38:27Z) - A Practical and Scalable Decoder for Topological Quantum Error
Correction with Digital Annealer [0.5658123802733283]
富士通デジタルアニール(DA)を用いた量子誤り訂正のための効率的でスケーラブルなデコーダを提案する。
特に,提案したDAデコーダを表面コードに実装し,様々なコードに対して詳細な数値実験を行い,その性能とスケーラビリティを検証した。
また、DAデコーダはハードウェア実装を含む様々な観点からUnion-Find(UF)デコーダよりも利点があることが示されている。
論文 参考訳(メタデータ) (2022-03-29T07:48:51Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Graph-Theoretic Approach to Quantum Error Correction [0.0]
量子ビットおよび量子ビットとして表される高次量子系の誤りを補正するための新しい量子誤り訂正符号のクラスについて検討する。
これらの符号は、元のグラフ理論による量子エラーの集合の表現に由来する。
本稿では,従来よりも高い符号化率を実現する完全相関雑音に対する最適符号化と,単一キューディットに対する最小符号化の2つの例を示す。
論文 参考訳(メタデータ) (2021-10-16T00:04:24Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。