論文の概要: Hardware-efficient quantum error correction using concatenated bosonic qubits
- arxiv url: http://arxiv.org/abs/2409.13025v1
- Date: Thu, 19 Sep 2024 18:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:14:24.722035
- Title: Hardware-efficient quantum error correction using concatenated bosonic qubits
- Title(参考訳): 連結ボソニック量子ビットを用いたハードウェア効率の量子誤差補正
- Authors: Harald Putterman, Kyungjoo Noh, Connor T. Hann, Gregory S. MacCabe, Shahriar Aghaeimeibodi, Rishi N. Patel, Menyoung Lee, William M. Jones, Hesam Moradinejad, Roberto Rodriguez, Neha Mahuli, Jefferson Rose, John Clai Owens, Harry Levine, Emma Rosenfeld, Philip Reinhold, Lorenzo Moncelsi, Joshua Ari Alcid, Nasser Alidoust, Patricio Arrangoiz-Arriola, James Barnett, Przemyslaw Bienias, Hugh A. Carson, Cliff Chen, Li Chen, Harutiun Chinkezian, Eric M. Chisholm, Ming-Han Chou, Aashish Clerk, Andrew Clifford, R. Cosmic, Ana Valdes Curiel, Erik Davis, Laura DeLorenzo, J. Mitchell D'Ewart, Art Diky, Nathan D'Souza, Philipp T. Dumitrescu, Shmuel Eisenmann, Essam Elkhouly, Glen Evenbly, Michael T. Fang, Yawen Fang, Matthew J. Fling, Warren Fon, Gabriel Garcia, Alexey V. Gorshkov, Julia A. Grant, Mason J. Gray, Sebastian Grimberg, Arne L. Grimsmo, Arbel Haim, Justin Hand, Yuan He, Mike Hernandez, David Hover, Jimmy S. C. Hung, Matthew Hunt, Joe Iverson, Ignace Jarrige, Jean-Christophe Jaskula, Liang Jiang, Mahmoud Kalaee, Rassul Karabalin, Peter J. Karalekas, Andrew J. Keller, Amirhossein Khalajhedayati, Aleksander Kubica, Hanho Lee, Catherine Leroux, Simon Lieu, Victor Ly, Keven Villegas Madrigal, Guillaume Marcaud, Gavin McCabe, Cody Miles, Ashley Milsted, Joaquin Minguzzi, Anurag Mishra, Biswaroop Mukherjee, Mahdi Naghiloo, Eric Oblepias, Gerson Ortuno, Jason Pagdilao, Nicola Pancotti, Ashley Panduro, JP Paquette, Minje Park, Gregory A. Peairs, David Perello, Eric C. Peterson, Sophia Ponte, John Preskill, Johnson Qiao, Gil Refael, Rachel Resnick, Alex Retzker, Omar A. Reyna, Marc Runyan, Colm A. Ryan, Abdulrahman Sahmoud, Ernesto Sanchez, Rohan Sanil, Krishanu Sankar, Yuki Sato, Thomas Scaffidi, Salome Siavoshi, Prasahnt Sivarajah, Trenton Skogland, Chun-Ju Su, Loren J. Swenson, Stephanie M. Teo, Astrid Tomada, Giacomo Torlai, E. Alex Wollack, Yufeng Ye, Jessica A. Zerrudo, Kailing Zhang, Fernando G. S. L. Brandão, Matthew H. Matheny, Oskar Painter,
- Abstract要約: 量子コンピュータは、論理量子ビットが多くのノイズの多い物理量子ビットで冗長に符号化される量子エラー補正を組み込む必要がある。
ここでは、マイクロファブリケート超伝導量子回路を用いて、符号化されたボソニックキャット量子ビットの連結から形成される論理量子ビットメモリを実現する。
論理量子ビットメモリの性能とスケーリングについて検討し,位相フリップ補正繰り返し符号がしきい値以下で動作していることを見出した。
- 参考スコア(独自算出の注目度): 41.6475446744259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to solve problems of practical importance, quantum computers will likely need to incorporate quantum error correction, where a logical qubit is redundantly encoded in many noisy physical qubits. The large physical-qubit overhead typically associated with error correction motivates the search for more hardware-efficient approaches. Here, using a microfabricated superconducting quantum circuit, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits with an outer repetition code of distance $d=5$. The bosonic cat qubits are passively protected against bit flips using a stabilizing circuit. Cat-qubit phase-flip errors are corrected by the repetition code which uses ancilla transmons for syndrome measurement. We realize a noise-biased CX gate which ensures bit-flip error suppression is maintained during error correction. We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below threshold, with logical phase-flip error decreasing with code distance from $d=3$ to $d=5$. Concurrently, the logical bit-flip error is suppressed with increasing cat-qubit mean photon number. The minimum measured logical error per cycle is on average $1.75(2)\%$ for the distance-3 code sections, and $1.65(3)\%$ for the longer distance-5 code, demonstrating the effectiveness of bit-flip error suppression throughout the error correction cycle. These results, where the intrinsic error suppression of the bosonic encodings allows us to use a hardware-efficient outer error correcting code, indicate that concatenated bosonic codes are a compelling paradigm for reaching fault-tolerant quantum computation.
- Abstract(参考訳): 現実的な重要性の問題を解決するために、量子コンピュータは、多くのノイズの多い物理量子ビットで論理量子ビットが冗長に符号化される量子エラー補正を組み込む必要がある。
エラー訂正に伴う大きな物理量子ビットオーバーヘッドは、よりハードウェア効率の良いアプローチの探索を動機付けている。
ここでは, マイクロファブリケート超伝導量子回路を用いて, 符号化されたボソニックキャット量子ビットと, 距離$d=5$の外部繰り返し符号との連結から形成される論理量子ビットメモリを実現する。
ボソニックキャットキュービットは、安定化回路を用いてビットフリップに対して受動的に保護される。
キャットキュービット位相フリップ誤差は、アンシラトランスモンを用いた反復符号により補正される。
我々は,誤り訂正時にビットフリップ誤りの抑制を確実にするノイズバイアスCXゲートを実現する。
本研究では, 論理量子ビットメモリの性能と拡張性について検討し, 位相フリップ補正繰り返し符号がしきい値以下で動作し, 符号距離が$d=3$から$d=5$になるにつれて, 位相フリップ誤差が減少することを示した。
同時に、キャット量子平均光子数の増加とともに論理ビットフリップ誤差を抑制する。
1サイクルあたりの最小値の論理誤差は、距離3の符号区間で平均$1.75(2)\%、より長い距離5の符号では$1.65(3)\%である。
これらの結果から, ハードウェア効率のよい外乱訂正符号を用いることで, 結合型ボソニック符号がフォールトトレラント量子計算に到達するための魅力的なパラダイムであることが示唆された。
関連論文リスト
- Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
ハイパボリックフロケット符号」と呼ばれる動的に生成された量子誤り訂正符号の族を導入する。
私たちの双曲的フロッケ符号の1つは、コード距離8の52の論理キュービットをエンコードするために400の物理キュービットを使用します。
小さなエラー率では、この符号に匹敵する論理的誤り抑制は、同じノイズモデルとデコーダを持つハニカム・フロケ符号を使用する場合、多くの物理量子ビット (1924) の5倍を必要とする。
論文 参考訳(メタデータ) (2023-09-18T18:00:02Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
本研究では, 散逸安定化された猫量子ビットの誤差補正性能について検討し, 解析を行った。
その結果, ビットフリップ誤り率の適度なスキューズでは, 位相フリップ率を一定に保ちながら, 通常のキャットキュービットに比べて有意に低下することがわかった。
論文 参考訳(メタデータ) (2022-10-24T16:02:20Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。