Morphology and Behavior Co-Optimization of Modular Satellites for Attitude Control
- URL: http://arxiv.org/abs/2409.13166v1
- Date: Fri, 20 Sep 2024 02:43:53 GMT
- Title: Morphology and Behavior Co-Optimization of Modular Satellites for Attitude Control
- Authors: Yuxing Wang, Jie Li, Cong Yu, Xinyang Li, Simeng Huang, Yongzhe Chang, Xueqian Wang, Bin Liang,
- Abstract summary: We introduce a novel gradient-based approach to simultaneously optimize both morphology and control for modular satellites.
Our Monte Carlo simulations demonstrate that this co-optimization approach results in modular satellites with better mission performance.
- Score: 16.673862756035582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of modular satellites marks a significant transformation in spacecraft engineering, introducing a new paradigm of flexibility, resilience, and scalability in space exploration endeavors. In addressing complex challenges such as attitude control, both the satellite's morphological architecture and the controller are crucial for optimizing performance. Despite substantial research on optimal control, there remains a significant gap in developing optimized and practical assembly strategies for modular satellites tailored to specific mission constraints. This research gap primarily arises from the inherently complex nature of co-optimizing design and control, a process known for its notorious bi-level optimization loop. Conventionally tackled through artificial evolution, this issue involves optimizing the morphology based on the fitness of individual controllers, which is sample-inefficient and computationally expensive. In this paper, we introduce a novel gradient-based approach to simultaneously optimize both morphology and control for modular satellites, enhancing their performance and efficiency in attitude control missions. Our Monte Carlo simulations demonstrate that this co-optimization approach results in modular satellites with better mission performance compared to those designed by evolution-based approaches. Furthermore, this study discusses potential avenues for future research.
Related papers
- Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
This paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) to design transmission strategies.
Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm.
We propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem.
arXiv Detail & Related papers (2024-04-14T03:44:54Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Photonic Structures Optimization Using Highly Data-Efficient Deep
Learning: Application To Nanofin And Annular Groove Phase Masks [40.11095094521714]
Metasurfaces offer a flexible framework for the manipulation of light properties in the realm of thin film optics.
This study aims to introduce a surrogate optimization framework for these devices.
The framework is applied to develop two kinds of vortex phase masks (VPMs) tailored for application in astronomical high-contrast imaging.
arXiv Detail & Related papers (2023-09-05T07:19:14Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Low-Thrust Orbital Transfer using Dynamics-Agnostic Reinforcement
Learning [0.0]
This study uses model-free Reinforcement Learning to train an agent on a constrained pericenter raising scenario for a low-thrust medium-Earth-orbit satellite.
The trained agent is then used to design a trajectory and to autonomously control the satellite during the cruise.
arXiv Detail & Related papers (2022-10-06T08:36:35Z) - Optimization of Rocker-Bogie Mechanism using Heuristic Approaches [0.0]
This paper focuses on the Rocker Bogie mechanism, a standard suspension methodology associated with foreign terrains.
This paper presents extensive tests on Simulated Annealing, Genetic Algorithms, Swarm Intelligence techniques, Basin Hoping and Differential Evolution.
arXiv Detail & Related papers (2022-09-14T21:02:01Z) - Constrained optimisation of preliminary spacecraft configurations under
the design-for-demise paradigm [1.0205541448656992]
Most mid-sized satellites currently launched and already in orbit fail to comply with the casualty risk threshold of 0.0001.
Satellites manufacturers and mission operators need to perform a disposal through a controlled re-entry.
This additional cost and complexity can be removed as the spacecraft is directly compliant with the casualty risk regulations.
arXiv Detail & Related papers (2020-12-27T17:48:29Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
Traditional approaches to quadruped control employ simplified, hand-derived models.
This significantly reduces the capability of the robot since its effective kinematic range is curtailed.
In this work, these challenges are addressed by framing quadruped control as optimisation in a structured latent space.
A deep generative model captures a statistical representation of feasible joint configurations, whilst complex dynamic and terminal constraints are expressed via high-level, semantic indicators.
We validate the feasibility of locomotion trajectories optimised using our approach both in simulation and on a real-worldmal quadruped.
arXiv Detail & Related papers (2020-07-03T07:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.