Low-Thrust Orbital Transfer using Dynamics-Agnostic Reinforcement
Learning
- URL: http://arxiv.org/abs/2211.08272v1
- Date: Thu, 6 Oct 2022 08:36:35 GMT
- Title: Low-Thrust Orbital Transfer using Dynamics-Agnostic Reinforcement
Learning
- Authors: Carlos M. Casas, Belen Carro, and Antonio Sanchez-Esguevillas
- Abstract summary: This study uses model-free Reinforcement Learning to train an agent on a constrained pericenter raising scenario for a low-thrust medium-Earth-orbit satellite.
The trained agent is then used to design a trajectory and to autonomously control the satellite during the cruise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low-thrust trajectory design and in-flight control remain two of the most
challenging topics for new-generation satellite operations. Most of the
solutions currently implemented are based on reference trajectories and lead to
sub-optimal fuel usage. Other solutions are based on simple guidance laws that
need to be updated periodically, increasing the cost of operations. Whereas
some optimization strategies leverage Artificial Intelligence methods, all of
the approaches studied so far need either previously generated data or a strong
a priori knowledge of the satellite dynamics. This study uses model-free
Reinforcement Learning to train an agent on a constrained pericenter raising
scenario for a low-thrust medium-Earth-orbit satellite. The agent does not have
any prior knowledge of the environment dynamics, which makes it unbiased from
classical trajectory optimization patterns. The trained agent is then used to
design a trajectory and to autonomously control the satellite during the
cruise. Simulations show that a dynamics-agnostic agent is able to learn a
quasi-optimal guidance law and responds well to uncertainties in the
environment dynamics. The results obtained open the door to the usage of
Reinforcement Learning on more complex scenarios, multi-satellite problems, or
to explore trajectories in environments where a reference solution is not known
Related papers
- Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
arXiv Detail & Related papers (2024-03-20T02:58:45Z) - Towards Deviation-Robust Agent Navigation via Perturbation-Aware
Contrastive Learning [125.61772424068903]
Vision-and-language navigation (VLN) asks an agent to follow a given language instruction to navigate through a real 3D environment.
We present a model-agnostic training paradigm, called Progressive Perturbation-aware Contrastive Learning (PROPER) to enhance the generalization ability of existing VLN agents.
arXiv Detail & Related papers (2024-03-09T02:34:13Z) - DTC: Deep Tracking Control [16.2850135844455]
We propose a hybrid control architecture that combines the advantages of both worlds to achieve greater robustness, foot-placement accuracy, and terrain generalization.
A deep neural network policy is trained in simulation, aiming to track the optimized footholds.
We demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts.
arXiv Detail & Related papers (2023-09-27T07:57:37Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
We propose a GNN-based approach that uses temporal encoding and imitation learning with data aggregation for learning both the embeddings and the edge prioritization policies.
Experiments show that the proposed methods can significantly accelerate online planning over state-of-the-art complete dynamic planning algorithms.
arXiv Detail & Related papers (2022-10-16T01:27:16Z) - Exploring Dynamic Context for Multi-path Trajectory Prediction [33.66335553588001]
We propose a novel framework, named Dynamic Context Network (DCENet)
In our framework, the spatial context between agents is explored by using self-attention architectures.
A set of future trajectories for each agent is predicted conditioned on the learned spatial-temporal context.
arXiv Detail & Related papers (2020-10-30T13:39:20Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using
Deep Reinforcement Learning [0.0]
Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics.
In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks.
Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios.
arXiv Detail & Related papers (2020-06-16T22:05:58Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.