論文の概要: Unveiling Population Heterogeneity in Health Risks Posed by Environmental Hazards Using Regression-Guided Neural Network
- arxiv url: http://arxiv.org/abs/2409.13205v1
- Date: Fri, 20 Sep 2024 04:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 11:29:51.753052
- Title: Unveiling Population Heterogeneity in Health Risks Posed by Environmental Hazards Using Regression-Guided Neural Network
- Title(参考訳): 回帰誘導ニューラルネットワークを用いた環境危険因子による健康リスクの集団不均一性の解明
- Authors: Jong Woo Nam, Eun Young Choi, Jennifer A. Ailshire, Yao-Yi Chiang,
- Abstract要約: 環境の危険は、特定の個人を不均等に高いリスクに陥らせる。
回帰誘導ニューラルネットワーク(RegNN)というハイブリッド手法を導入する。
ReGNNは、人工知能ニューラルネットワーク(ANN)を使用して予測器を非線形に結合し、焦点予測器と相互作用する潜在表現を生成する。
- 参考スコア(独自算出の注目度): 1.9365354294332777
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Environmental hazards place certain individuals at disproportionately higher risks. As these hazards increasingly endanger human health, precise identification of the most vulnerable population subgroups is critical for public health. Moderated multiple regression (MMR) offers a straightforward method for investigating this by adding interaction terms between the exposure to a hazard and other population characteristics to a linear regression model. However, when the vulnerabilities are hidden within a cross-section of many characteristics, MMR is often limited in its capabilities to find any meaningful discoveries. Here, we introduce a hybrid method, named regression-guided neural networks (ReGNN), which utilizes artificial neural networks (ANNs) to non-linearly combine predictors, generating a latent representation that interacts with a focal predictor (i.e. variable measuring exposure to an environmental hazard). We showcase the use of ReGNN for investigating the population heterogeneity in the health effects of exposure to air pollution (PM2.5) on cognitive functioning scores. We demonstrate that population heterogeneity that would otherwise be hidden using traditional MMR can be found using ReGNN by comparing its results to the fit results of the traditional MMR models. In essence, ReGNN is a novel tool that enhances traditional regression models by effectively summarizing and quantifying an individual's susceptibility to health risks.
- Abstract(参考訳): 環境の危険は、特定の個人を不均等に高いリスクに陥らせる。
これらの危険が人間の健康を危険にさらす中、最も脆弱な集団の正確な同定は公衆衛生にとって重要である。
モデレート多重回帰(MMR)は、リスクへの曝露と他の集団特性の間の相互作用項を線形回帰モデルに付加することにより、これを調査するための簡単な方法を提供する。
しかし、脆弱性が多くの特徴の断面に隠されている場合、MMRは意味のある発見を見つける能力に制限されることが多い。
本稿では、ニューラルネットワーク(ANN)を用いて予測器を非線形に結合し、局所予測器と相互作用する潜伏表現を生成するハイブリッド手法である回帰誘導ニューラルネットワーク(RegNN)を提案する。
大気汚染(PM2.5)が認知機能に与える影響について,ReGNNを用いた調査を行った。
従来のMMRモデルに適合する結果と比較することにより,従来のMMRを用いて隠蔽される集団の不均一性をReGNNを用いて発見できることを実証した。
本質的には、ReGNNは、個人の健康リスクに対する感受性を効果的に要約し定量化することで、従来の回帰モデルを強化する新しいツールである。
関連論文リスト
- A Game-Theoretic Approach to Privacy-Utility Tradeoff in Sharing Genomic Summary Statistics [24.330984323956173]
本稿では,ゲノムサマリー統計の共有において,最適なプライバシ・ユーティリティ・トレードオフのためのゲーム理論フレームワークを提案する。
実験により,提案手法は,技術状況よりも強力な攻撃と強力な防衛戦略をもたらすことが示された。
論文 参考訳(メタデータ) (2024-06-03T22:09:47Z) - Neural Fine-Gray: Monotonic neural networks for competing risks [0.0]
生存分析として知られる時間対イベントモデリングは、関心のある出来事を経験していない患者の検閲に対処するため、標準回帰とは異なる。
本稿では、制約付きモノトニックニューラルネットワークを用いて、各サバイバル分布をモデル化する。
このソリューションの有効性は、1つの合成データセットと3つの医療データセットで示される。
論文 参考訳(メタデータ) (2023-05-11T10:27:59Z) - Reweighted Mixup for Subpopulation Shift [63.1315456651771]
サブポピュレーションシフトは、多くの実世界のアプリケーションに存在し、同じサブポピュレーショングループを含むが異なるサブポピュレーション比率を持つトレーニングとテストの分布を指す。
重要度再重み付けは、サブポピュレーションシフトを処理する古典的で効果的な方法である。
我々は、オーバーフィッティング問題を緩和するために、reweighted mixupと呼ばれるシンプルで実用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T03:44:50Z) - Neural Networks for Extreme Quantile Regression with an Application to Forecasting of Flood Risk [0.0]
本稿では,ニューラルネットワークと極値理論を組み合わせたEQRNモデルを提案する。
本研究では,スイス・アーレ流域の洪水リスク予測に本手法を適用した。
論文 参考訳(メタデータ) (2022-08-16T08:02:49Z) - Two steps to risk sensitivity [4.974890682815778]
条件付きバリュー・アット・リスク(CVaR)は、人間と動物の計画のモデル化のためのリスク尺度である。
CVaRに対する従来の分布的アプローチを逐次的に導入し、人間の意思決定者の選択を再分析する。
次に,リスク感度,すなわち時間的整合性,さらに重要な特性について考察し,CVaRの代替案を示す。
論文 参考訳(メタデータ) (2021-11-12T16:27:47Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
生存予測のための新しいフレキシブルな手法,DeepHazardを提案する。
我々のアプローチは、時間内に添加物としてのみ制限される、広範囲の継続的なハザード形態に適合している。
数値的な例では,我々の手法は,C-インデックス計量を用いて評価された予測能力において,既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T21:01:49Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Survival Cluster Analysis [93.50540270973927]
異なるリスクプロファイルを持つサブポピュレーションを特定するために、生存分析には未解決の必要性がある。
このニーズに対処するアプローチは、個々の成果のキャラクタリゼーションを改善する可能性が高い。
論文 参考訳(メタデータ) (2020-02-29T22:41:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。