MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning
- URL: http://arxiv.org/abs/2409.13213v1
- Date: Fri, 20 Sep 2024 04:50:49 GMT
- Title: MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning
- Authors: Eric Li, Yifan Zhang, Yu Huang, Kevin Leach,
- Abstract summary: MalMixer is a semi-supervised malware family classifier that achieves high accuracy with sparse training data.
We show that MalMixer achieves state-of-the-art performance in few-shot malware family classification settings.
- Score: 10.366927745010006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent growth and proliferation of malware has tested practitioners' ability to promptly classify new samples according to malware families. In contrast to labor-intensive reverse engineering efforts, machine learning approaches have demonstrated increased speed and accuracy. However, most existing deep-learning malware family classifiers must be calibrated using a large number of samples that are painstakingly manually analyzed before training. Furthermore, as novel malware samples arise that are beyond the scope of the training set, additional reverse engineering effort must be employed to update the training set. The sheer volume of new samples found in the wild creates substantial pressure on practitioners' ability to reverse engineer enough malware to adequately train modern classifiers. In this paper, we present MalMixer, a malware family classifier using semi-supervised learning that achieves high accuracy with sparse training data. We present a novel domain-knowledge-aware technique for augmenting malware feature representations, enhancing few-shot performance of semi-supervised malware family classification. We show that MalMixer achieves state-of-the-art performance in few-shot malware family classification settings. Our research confirms the feasibility and effectiveness of lightweight, domain-knowledge-aware feature augmentation methods and highlights the capabilities of similar semi-supervised classifiers in addressing malware classification issues.
Related papers
- Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach [0.0]
We present a machine learning-based system for detecting obfuscated malware that is highly accurate, lightweight and interpretable.
Our system is capable of detecting 15 malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the Spyware family.
The Transponder-focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 microseconds per file.
arXiv Detail & Related papers (2024-07-07T12:41:40Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - Semi-supervised Classification of Malware Families Under Extreme Class Imbalance via Hierarchical Non-Negative Matrix Factorization with Automatic Model Selection [34.7994627734601]
We propose a novel hierarchical semi-supervised algorithm, which can be used in the early stages of the malware family labeling process.
With HNMFk, we exploit the hierarchical structure of the malware data together with a semi-supervised setup, which enables us to classify malware families under conditions of extreme class imbalance.
Our solution can perform abstaining predictions, or rejection option, which yields promising results in the identification of novel malware families.
arXiv Detail & Related papers (2023-09-12T23:45:59Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
Existing malware detection methods fail to correctly classify different malware families when obfuscated malware samples are present in the training dataset.
We propose a novel task-aware few-shot-learning-based Siamese Neural Network that is resilient against such control flow obfuscation techniques.
Our proposed approach is highly effective in recognizing unique malware signatures, thus correctly classifying malware samples that belong to the same malware family.
arXiv Detail & Related papers (2021-10-26T04:44:13Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
We show how a malicious actor trains a surrogate model to discover binary mutations that cause an instance to be misclassified.
Then, mutated malware is sent to the victim model that takes the place of an antivirus API to test whether it can evade detection.
arXiv Detail & Related papers (2021-06-15T03:31:02Z) - Deepfake Forensics via An Adversarial Game [99.84099103679816]
We advocate adversarial training for improving the generalization ability to both unseen facial forgeries and unseen image/video qualities.
Considering that AI-based face manipulation often leads to high-frequency artifacts that can be easily spotted by models yet difficult to generalize, we propose a new adversarial training method that attempts to blur out these specific artifacts.
arXiv Detail & Related papers (2021-03-25T02:20:08Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z) - Exploring Optimal Deep Learning Models for Image-based Malware Variant
Classification [3.8073142980733]
We study the impact of differences in deep learning models and the degree of transfer learning on the classification accuracy of malware variants.
We found that the highest classification accuracy was obtained by fine-tuning one of the latest deep learning models with a relatively low degree of transfer learning.
arXiv Detail & Related papers (2020-04-10T23:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.