Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials
- URL: http://arxiv.org/abs/2409.13390v1
- Date: Fri, 20 Sep 2024 10:44:40 GMT
- Title: Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials
- Authors: Thomas Bischoff, Bastian Jäckl, Matthias Rupp,
- Abstract summary: Machine-learning interatomic potentials (MLPs) are fast, data-driven surrogate models of atomistic systems' potential energy surfaces.
We present a benchmark that automatically quantifies the performance of a liquid-liquid phase transition in hydrogen under pressure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learning interatomic potentials (MLPs) are fast, data-driven surrogate models of atomistic systems' potential energy surfaces that can accelerate ab-initio molecular dynamics (MD) simulations by several orders of magnitude. The performance of MLPs is commonly measured as the prediction error in energies and forces on data not used in their training. While low prediction errors on a test set are necessary, they do not guarantee good performance in MD simulations. The latter requires physically motivated performance measures obtained from running accelerated simulations. However, the adoption of such measures has been limited by the effort and domain knowledge required to calculate and interpret them. To overcome this limitation, we present a benchmark that automatically quantifies the performance of MLPs in MD simulations of a liquid-liquid phase transition in hydrogen under pressure, a challenging benchmark system. The benchmark's h-llpt-24 dataset provides reference geometries, energies, forces, and stresses from density functional theory MD simulations at different temperatures and mass densities. The benchmark's Python code automatically runs MLP-accelerated MD simulations and calculates, quantitatively compares and visualizes pressures, stable molecular fractions, diffusion coefficients, and radial distribution functions. Employing this benchmark, we show that several state-of-the-art MLPs fail to reproduce the liquid-liquid phase transition.
Related papers
- BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development [11.682763325188525]
We introduce BAMBOO, a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries.
BamBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity.
We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
arXiv Detail & Related papers (2024-04-10T17:31:49Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling [2.494740426749958]
We present a more comprehensive set of benchmarking tests for evaluating the transferability of machine-learned force fields.
We use a graph neural network (GNN)-based force field coupled with the OpenMM package to carry out MD simulations for Argon.
Our results show that the model can accurately capture the behavior of the solid phase only when the configurations from the solid phase are included in the training dataset.
arXiv Detail & Related papers (2023-01-10T00:25:48Z) - Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations [5.138982355658199]
Molecular dynamics (MD) simulation techniques are widely used for various natural science applications.
We benchmark a collection of state-of-the-art (SOTA) ML FF models and illustrate, in particular, how the commonly benchmarked force accuracy is not well aligned with relevant simulation metrics.
arXiv Detail & Related papers (2022-10-13T17:59:03Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Achieving 100X faster simulations of complex biological phenomena by
coupling ML to HPC ensembles [47.44377051031385]
We present DeepDriveMD, a tool for a range of prototypical ML-driven HPC simulation scenarios.
We use it to quantify improvements in the scientific performance of ML-driven ensemble-based applications.
arXiv Detail & Related papers (2021-04-10T15:52:39Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
Machine learning (ML) based potentials aim for faithful emulation of quantum mechanics (QM) calculations at drastically reduced computational cost.
We present a highly automated approach to dataset construction using the principles of active learning (AL)
We demonstrate this approach by building an ML potential for aluminum (ANI-Al)
To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics.
arXiv Detail & Related papers (2020-03-10T19:06:32Z) - A Comparative Study of Machine Learning Models for Predicting the State
of Reactive Mixing [0.0]
Accurate predictions of reactive mixing are critical for many Earth and environmental science problems.
A high-fidelity, finite-element-based numerical model is built to solve the fast, irreversible bimolecular reaction-diffusion scenarios.
A total of 2,315 simulations are performed using different sets of model input parameters.
arXiv Detail & Related papers (2020-02-24T22:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.