BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development
- URL: http://arxiv.org/abs/2404.07181v4
- Date: Mon, 22 Apr 2024 17:44:12 GMT
- Title: BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development
- Authors: Sheng Gong, Yumin Zhang, Zhenliang Mu, Zhichen Pu, Hongyi Wang, Zhiao Yu, Mengyi Chen, Tianze Zheng, Zhi Wang, Lifei Chen, Xiaojie Wu, Shaochen Shi, Weihao Gao, Wen Yan, Liang Xiang,
- Abstract summary: We introduce BAMBOO, a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries.
BamBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity.
We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
- Score: 11.682763325188525
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm$^3$ on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
Related papers
- Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials [0.0]
Machine-learning interatomic potentials (MLPs) are fast, data-driven surrogate models of atomistic systems' potential energy surfaces.
We present a benchmark that automatically quantifies the performance of a liquid-liquid phase transition in hydrogen under pressure.
arXiv Detail & Related papers (2024-09-20T10:44:40Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling [2.494740426749958]
We present a more comprehensive set of benchmarking tests for evaluating the transferability of machine-learned force fields.
We use a graph neural network (GNN)-based force field coupled with the OpenMM package to carry out MD simulations for Argon.
Our results show that the model can accurately capture the behavior of the solid phase only when the configurations from the solid phase are included in the training dataset.
arXiv Detail & Related papers (2023-01-10T00:25:48Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
Machine learning (ML) based potentials aim for faithful emulation of quantum mechanics (QM) calculations at drastically reduced computational cost.
We present a highly automated approach to dataset construction using the principles of active learning (AL)
We demonstrate this approach by building an ML potential for aluminum (ANI-Al)
To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics.
arXiv Detail & Related papers (2020-03-10T19:06:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.