論文の概要: Validation & Exploration of Multimodal Deep-Learning Camera-Lidar Calibration models
- arxiv url: http://arxiv.org/abs/2409.13402v1
- Date: Fri, 20 Sep 2024 11:03:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:28:56.385556
- Title: Validation & Exploration of Multimodal Deep-Learning Camera-Lidar Calibration models
- Title(参考訳): マルチモーダルディープラーニングカメラライダー校正モデルの検証と探索
- Authors: Venkat Karramreddy, Liam Mitchell,
- Abstract要約: 本稿では,マルチモーダルセンサシステムの校正のためのディープラーニングアーキテクチャの探索,評価,実装における革新的な研究について述べる。
焦点は、センサー融合を利用して、3D LiDARと2Dカメラのダイナミックでリアルタイムなアライメントを実現することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents an innovative study in exploring, evaluating, and implementing deep learning architectures for the calibration of multi-modal sensor systems. The focus behind this is to leverage the use of sensor fusion to achieve dynamic, real-time alignment between 3D LiDAR and 2D Camera sensors. static calibration methods are tedious and time-consuming, which is why we propose utilizing Conventional Neural Networks (CNN) coupled with geometrically informed learning to solve this issue. We leverage the foundational principles of Extrinsic LiDAR-Camera Calibration tools such as RegNet, CalibNet, and LCCNet by exploring open-source models that are available online and comparing our results with their corresponding research papers. Requirements for extracting these visual and measurable outputs involved tweaking source code, fine-tuning, training, validation, and testing for each of these frameworks for equal comparisons. This approach aims to investigate which of these advanced networks produces the most accurate and consistent predictions. Through a series of experiments, we reveal some of their shortcomings and areas for potential improvements along the way. We find that LCCNet yields the best results out of all the models that we validated.
- Abstract(参考訳): 本稿では,マルチモーダルセンサシステムの校正のためのディープラーニングアーキテクチャの探索,評価,実装における革新的な研究について述べる。
その背景にあるのは、センサー融合を利用して、3D LiDARと2Dカメラのダイナミックでリアルタイムなアライメントを実現することだ。
静的キャリブレーション法は退屈で時間を要するため,この問題を解決するために,従来型ニューラルネットワーク(CNN)と幾何学的に情報を得た学習を組み合わせることを提案する。
我々は、RegNet、CalibNet、LCCNetなどのExtrinsic LiDAR-Camera Calibrationツールの基本原則を活用し、オンラインで利用可能なオープンソースモデルを探索し、その結果を対応する研究論文と比較する。
これらの視覚的および測定可能なアウトプットを抽出するために必要な要件は、ソースコードの微調整、トレーニング、バリデーション、テストの各フレームワークを等しく比較することであった。
この手法は,どの先進的ネットワークが最も正確かつ一貫した予測を生成するかを調べることを目的としている。
一連の実験を通じて、その過程での潜在的な改善の欠点と領域を明らかにします。
LCCNetは、検証したすべてのモデルの中で、最高の結果をもたらすことが分かりました。
関連論文リスト
- 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
我々は,LiDARとカメラのペアを連続的に利用して事前学習の目的を確立するための,新しいフレームワークであるSuperFlowを紹介する。
学習効率をさらに向上するため,カメラビューから抽出した知識の整合性を高めるプラグイン・アンド・プレイ・ビュー・一貫性モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-07-08T17:59:54Z) - RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency
Learning [42.90987864456673]
LiDARカメラ外部推定の現在の手法は、オフラインの目標と人間の努力に依存している。
本稿では,外因性キャリブレーション問題に頑健で自動的で単発的な方法で対処する新しい手法を提案する。
我々は,異なるデータセットの総合的な実験を行い,本手法が正確かつ堅牢な性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-02T09:29:50Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
カメラキャリブレーションでは、キャプチャされたシーケンスから幾何学的特徴を推測するために、カメラパラメータを推定する。
近年の取り組みでは,手動キャリブレーションの繰り返し作業に代えて,学習ベースのソリューションが活用される可能性が示唆されている。
論文 参考訳(メタデータ) (2023-03-19T04:00:05Z) - GOOD: General Optimization-based Fusion for 3D Object Detection via
LiDAR-Camera Object Candidates [10.534984939225014]
3次元物体検出は、自律運転における知覚タスクの中核となる基礎となる。
Goodは汎用的な最適化ベースの融合フレームワークで、追加のモデルをトレーニングすることなく、満足度の高い検出を実現できる。
nuScenesとKITTIデータセットの両方の実験を行い、その結果、GOODはPointPillarsと比較してmAPスコアで9.1%上回っていることが示された。
論文 参考訳(メタデータ) (2023-03-17T07:05:04Z) - Attention Mechanism for Contrastive Learning in GAN-based Image-to-Image
Translation [3.90801108629495]
本稿では,異なる領域にまたがって高品質な画像を生成可能なGANモデルを提案する。
実世界から取得した画像データと3Dゲームからのシミュレーション画像を用いて、Contrastive Learningを利用してモデルを自己指導的に訓練する。
論文 参考訳(メタデータ) (2023-02-23T14:23:23Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
ニューラルネットワークのキャリブレーションに対する考慮の欠如は、人間から信頼を得ることはないだろう。
我々はNeural Clamping Toolkitを紹介した。これは開発者が最先端のモデルに依存しないキャリブレーションモデルを採用するのを支援するために設計された最初のオープンソースフレームワークである。
論文 参考訳(メタデータ) (2022-11-29T15:03:05Z) - From One to Many: Dynamic Cross Attention Networks for LiDAR and Camera
Fusion [12.792769704561024]
既存の融合法では、キャリブレーションに基づいて、各3Dポイントを1つの投影された画像ピクセルに調整する傾向がある。
本稿では,動的クロスアテンション(DCA)モジュールを提案する。
Dynamic Cross Attention Network (DCAN) という名称の核融合アーキテクチャは、マルチレベルイメージ機能を活用し、ポイントクラウドの複数の表現に適応する。
論文 参考訳(メタデータ) (2022-09-25T16:10:14Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization [27.247818386065894]
光フィールド顕微鏡画像を用いた高速かつ堅牢なソースの3Dローカリゼーションを実現するモデルに基づくディープラーニング手法を提案する。
これは畳み込みスパース符号化問題を効率的に解くディープネットワークを開発することによって実現される。
光場からのほ乳類ニューロンの局在化実験により,提案手法が性能,解釈性,効率の向上をもたらすことが示された。
論文 参考訳(メタデータ) (2021-03-10T16:24:47Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。