Differentially Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative Learning
- URL: http://arxiv.org/abs/2409.13440v1
- Date: Fri, 20 Sep 2024 12:08:22 GMT
- Title: Differentially Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative Learning
- Authors: Xiaowen Fu, Bingxin Wang, Xinzhou Guo, Guoqing Liu, Yang Xiang,
- Abstract summary: multimodal electroencephalogram (EEG) learning has shown great promise in disease detection.
One widely adopted scheme for privacy protection is differential privacy (DP) because of its clear interpretation and ease of implementation.
We propose a novel Differentially Private Multimodal Laplacian Dropout (DP-MLD) scheme for multimodal EEG learning.
- Score: 9.215609291641591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, multimodal electroencephalogram (EEG) learning has shown great promise in disease detection. At the same time, ensuring privacy in clinical studies has become increasingly crucial due to legal and ethical concerns. One widely adopted scheme for privacy protection is differential privacy (DP) because of its clear interpretation and ease of implementation. Although numerous methods have been proposed under DP, it has not been extensively studied for multimodal EEG data due to the complexities of models and signal data considered there. In this paper, we propose a novel Differentially Private Multimodal Laplacian Dropout (DP-MLD) scheme for multimodal EEG learning. Our approach proposes a novel multimodal representative learning model that processes EEG data by language models as text and other modal data by vision transformers as images, incorporating well-designed cross-attention mechanisms to effectively extract and integrate cross-modal features. To achieve DP, we design a novel adaptive feature-level Laplacian dropout scheme, where randomness allocation and performance are dynamically optimized within given privacy budgets. In the experiment on an open-source multimodal dataset of Freezing of Gait (FoG) in Parkinson's Disease (PD), our proposed method demonstrates an approximate 4\% improvement in classification accuracy, and achieves state-of-the-art performance in multimodal EEG learning under DP.
Related papers
- Supervised Multi-Modal Fission Learning [19.396207029419813]
Learning from multimodal datasets can leverage complementary information and improve performance in prediction tasks.
We propose a Multi-Modal Fission Learning model that simultaneously identifies globally joint, partially joint, and individual components.
arXiv Detail & Related papers (2024-09-30T17:58:03Z) - Deep Multimodal Collaborative Learning for Polyp Re-Identification [4.4028428688691905]
Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras.
Traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset produce unsatisfactory retrieval performance.
We propose a novel Deep Multimodal Collaborative Learning framework named DMCL for polyp re-identification.
arXiv Detail & Related papers (2024-08-12T04:05:19Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space.
By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization.
arXiv Detail & Related papers (2022-12-19T23:50:19Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.