Noise-Robust and Resource-Efficient ADMM-based Federated Learning
- URL: http://arxiv.org/abs/2409.13451v1
- Date: Fri, 20 Sep 2024 12:32:22 GMT
- Title: Noise-Robust and Resource-Efficient ADMM-based Federated Learning
- Authors: Ehsan Lari, Reza Arablouei, Vinay Chakravarthi Gogineni, Stefan Werner,
- Abstract summary: Federated learning (FL) leverages client-server communications to train global models on decentralized data.
We propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load.
- Score: 6.957420925496431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load. We derive the proposed algorithm through solving the weighted least-squares (WLS) regression problem as an illustrative example. We first frame WLS regression as a distributed convex optimization problem over a federated network employing random scheduling for improved communication efficiency. We then apply the alternating direction method of multipliers (ADMM) to iteratively solve this problem. To counteract the detrimental effects of cumulative communication noise, we introduce a key modification by eliminating the dual variable and implementing a new local model update at each participating client. This subtle yet effective change results in using a single noisy global model update at each client instead of two, improving robustness against additive communication noise. Furthermore, we incorporate another modification enabling clients to continue local updates even when not selected by the server, leading to substantial performance improvements. Our theoretical analysis confirms the convergence of our algorithm in both mean and the mean-square senses, even when the server communicates with a random subset of clients over noisy links at each iteration. Numerical results validate the effectiveness of our proposed algorithm and corroborate our theoretical findings.
Related papers
- FedScalar: A Communication efficient Federated Learning [0.0]
Federated learning (FL) has gained considerable popularity for distributed machine learning.
emphFedScalar enables agents to communicate updates using a single scalar.
arXiv Detail & Related papers (2024-10-03T07:06:49Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
arXiv Detail & Related papers (2024-05-16T14:22:49Z) - Communication-Efficient Federated Learning with Adaptive Compression under Dynamic Bandwidth [6.300376113680886]
Federated learning can train models without directly providing local data to the server.
Recent scholars have achieved the communication efficiency of federated learning mainly by model compression.
We show the performance of AdapComFL algorithm, and compare it with existing algorithms.
arXiv Detail & Related papers (2024-05-06T08:00:43Z) - FedNMUT -- Federated Noisy Model Update Tracking Convergence Analysis [3.665841843512992]
A novel Decentralized Noisy Model Update Tracking Federated Learning algorithm (FedNMUT) is proposed.
It is tailored to function efficiently in the presence noisy communication channels.
FedNMUT incorporates noise into its parameters to mimic the conditions of noisy communication channels.
arXiv Detail & Related papers (2024-03-20T02:17:47Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMO is the first (first-order) FLtexttFedGLOMO algorithm.
Our algorithm is provably optimal even with communication between the clients and the server.
arXiv Detail & Related papers (2020-12-07T21:05:31Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.