論文の概要: Concept-Based Explanations in Computer Vision: Where Are We and Where Could We Go?
- arxiv url: http://arxiv.org/abs/2409.13456v1
- Date: Fri, 20 Sep 2024 12:43:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:04:14.228784
- Title: Concept-Based Explanations in Computer Vision: Where Are We and Where Could We Go?
- Title(参考訳): コンピュータビジョンにおける概念に基づく説明:我々はどこにいてどこへ行くのか?
- Authors: Jae Hee Lee, Georgii Mikriukov, Gesina Schwalbe, Stefan Wermter, Diedrich Wolter,
- Abstract要約: ニューラルビジョンモデルを説明するための概念ベースのXAIアプローチは、有望な研究分野である。
本稿では,C-XAI手法を用いて,興味深く,未探索な領域を同定し,今後の研究方向性を提案する。
- 参考スコア(独自算出の注目度): 17.381059227791162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept-based XAI (C-XAI) approaches to explaining neural vision models are a promising field of research, since explanations that refer to concepts (i.e., semantically meaningful parts in an image) are intuitive to understand and go beyond saliency-based techniques that only reveal relevant regions. Given the remarkable progress in this field in recent years, it is time for the community to take a critical look at the advances and trends. Consequently, this paper reviews C-XAI methods to identify interesting and underexplored areas and proposes future research directions. To this end, we consider three main directions: the choice of concepts to explain, the choice of concept representation, and how we can control concepts. For the latter, we propose techniques and draw inspiration from the field of knowledge representation and learning, showing how this could enrich future C-XAI research.
- Abstract(参考訳): 概念に基づくXAI(C-XAI)アプローチは、概念(画像の中の意味論的意味のある部分)を参照する説明は直感的に理解でき、関連する領域のみを明らかにする唾液ベースのテクニックを越えているため、将来的な研究分野である。
近年のこの分野の顕著な進歩を考えると、コミュニティは進歩とトレンドを批判的に見る時が来た。
そこで本研究では,C-XAI法を用いて,興味深く未探索な領域を同定し,今後の研究方向性を提案する。
この目的のために、説明すべき概念の選択、概念表現の選択、概念の制御方法の3つの主な方向を考える。
後者では,知識表現と学習の分野からインスピレーションを得る手法を提案し,これが今後のC-XAI研究をいかに充実させるかを示した。
関連論文リスト
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
ゼロショット画像認識(ZSIR)は、目に見えない領域の認識と推論をモデルに与えることを目的としている。
本稿では,近年の素子ワイドZSIRの進歩について概説する。
まず、オブジェクト認識、合成認識、基礎モデルに基づくオープンワールド認識という3つの基本的なZSIRタスクを、統一された要素的視点に統合する。
論文 参考訳(メタデータ) (2024-08-09T05:49:21Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
概念は人間の思考基盤として知られている。
ディープニューラルネットワーク(DNN)における様々な概念表現とその発見アルゴリズムの体系的レビューと分類について述べる。
また,これらの手法を総合的に調査した最初の論文として,概念に基づくモデル改善文献について詳述する。
論文 参考訳(メタデータ) (2024-03-21T17:09:20Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Concept-based Explainable Artificial Intelligence: A Survey [16.580100294489508]
生の機能を説明に利用することは、近年、いくつかの作品で議論されている。
統一された分類と正確なフィールド定義はいまだに欠けている。
本稿では,C-XAIのアプローチを徹底的にレビューすることで,そのギャップを埋める。
論文 参考訳(メタデータ) (2023-12-20T11:27:21Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
本論は、内部表現と人間の理解可能な概念を関連付けることを目的とした研究に焦点をあてる。
この分類学と因果関係の理論は、ニューラルネットワークの説明から期待できるもの、期待できないものを理解するのに有用である。
この分析は、モデル説明可能性の目標に関するレビューされた文献の曖昧さも明らかにしている。
論文 参考訳(メタデータ) (2022-12-31T12:56:12Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
この本はコンピュータビジョンの分野における科学的進歩を批判している。
情報に基づく自然法則の枠組みにおける視覚の研究を提案する。
論文 参考訳(メタデータ) (2022-06-30T15:20:36Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
eXplainable Artificial Intelligence(XAI)の分野は、今日の強力だが不透明なディープラーニングモデルに透明性をもたらすことを目指している。
局所的なXAI手法は属性マップの形で個々の予測を説明するが、グローバルな説明手法はモデルが一般的にエンコードするために学んだ概念を視覚化する。
論文 参考訳(メタデータ) (2022-06-07T12:05:58Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
概念発見は、深層学習の専門家とモデルエンドユーザーの間のギャップを埋めるために重要である。
現在のアプローチには、手作りの概念データセットと、それを潜在空間方向に変換することが含まれる。
本研究では,複数の仮説テストに基づく意味ある概念のユーザ発見と,インタラクティブな可視化に関する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-09T22:29:48Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
このレポートは、表現学習が生データから概念を誘導する方法を示しています。
このレポートの主な技術的目標は、表現学習のテクニックが概念空間の格子理論的定式化とどのように結婚できるかを示すことである。
論文 参考訳(メタデータ) (2021-01-13T15:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。