論文の概要: Robust Salient Object Detection on Compressed Images Using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2409.13464v1
- Date: Fri, 20 Sep 2024 12:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:04:14.216781
- Title: Robust Salient Object Detection on Compressed Images Using Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いた圧縮画像のロバスト能動物体検出
- Authors: Guibiao Liao, Wei Gao,
- Abstract要約: 圧縮画像上でのCNNに基づく有能な物体検出のベンチマークと解析に特化している。
1) 現在最先端のCNNベースのSODモデルはクリーンな画像に優れたが, 圧縮画像に適用した場合に顕著な性能上のボトルネックが生じる。
CNNベースのCI SODを実現するために,ロバストな特徴表現学習に焦点を当てた,シンプルだが有望なベースラインフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.044094594551024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Salient object detection (SOD) has achieved substantial progress in recent years. In practical scenarios, compressed images (CI) serve as the primary medium for data transmission and storage. However, scant attention has been directed towards SOD for compressed images using convolutional neural networks (CNNs). In this paper, we are dedicated to strictly benchmarking and analyzing CNN-based salient object detection on compressed images. To comprehensively study this issue, we meticulously establish various CI SOD datasets from existing public SOD datasets. Subsequently, we investigate representative CNN-based SOD methods, assessing their robustness on compressed images (approximately 2.64 million images). Importantly, our evaluation results reveal two key findings: 1) current state-of-the-art CNN-based SOD models, while excelling on clean images, exhibit significant performance bottlenecks when applied to compressed images. 2) The principal factors influencing the robustness of CI SOD are rooted in the characteristics of compressed images and the limitations in saliency feature learning. Based on these observations, we propose a simple yet promising baseline framework that focuses on robust feature representation learning to achieve robust CNN-based CI SOD. Extensive experiments demonstrate the effectiveness of our approach, showcasing markedly improved robustness across various levels of image degradation, while maintaining competitive accuracy on clean data. We hope that our benchmarking efforts, analytical insights, and proposed techniques will contribute to a more comprehensive understanding of the robustness of CNN-based SOD algorithms, inspiring future research in the community.
- Abstract(参考訳): 健全物体検出(SOD)は近年大きく進歩している。
実際のシナリオでは、圧縮画像(CI)がデータ転送と記憶の主要な媒体となる。
しかし、畳み込みニューラルネットワーク(CNN)を用いた圧縮画像のSODに向けて注意が向けられている。
本稿では,圧縮画像上でのCNNに基づく有意な物体検出の厳密なベンチマークと解析を行う。
この問題を包括的に研究するために、既存の公開SODデータセットからさまざまなCI SODデータセットを慎重に確立する。
次に, 圧縮画像(約264万画像)上での強靭性の評価を行い, 代表的CNNに基づくSOD法について検討した。
重要な点として,評価結果は2つの重要な発見である。
1) 現在最先端のCNNベースのSODモデルは、クリーンな画像に優れたが、圧縮された画像に適用すると大きなパフォーマンスボトルネックが生じる。
2)CI SODのロバスト性に影響を与える主な要因は,圧縮画像の特徴と,有意な特徴学習の限界に根ざしている。
これらの観測に基づいて、我々は、堅牢なCNNベースのCI SODを実現するために、ロバストな特徴表現学習に焦点を当てた、単純で有望なベースラインフレームワークを提案する。
本手法の有効性を実証し, クリーンなデータに対する競合精度を維持しつつ, 画像劣化の度合いを著しく改善したことを示す。
我々は、CNNベースのSODアルゴリズムの堅牢性をより包括的に理解し、コミュニティにおける今後の研究を促進するために、ベンチマークの取り組み、分析的洞察、提案された技術が貢献できることを願っている。
関連論文リスト
- Machine Perception-Driven Image Compression: A Layered Generative
Approach [32.23554195427311]
階層型生成画像圧縮モデルを提案する。
タスクに依存しない学習に基づく圧縮モデルを提案し、様々な圧縮されたドメインベースの分析タスクを効果的にサポートする。
圧縮比、再構成画像品質、下流知覚性能の最良のバランス点を得るために、共同最適化スケジュールを採用する。
論文 参考訳(メタデータ) (2023-04-14T02:12:38Z) - Supervised and Contrastive Self-Supervised In-Domain Representation
Learning for Dense Prediction Problems in Remote Sensing [0.0]
本稿では、リモートセンシングと画像Netデータセットの領域差を解決するために、教師付きおよび自己教師型両方のドメイン表現の有効性について検討する。
自己教師付き事前学習では,SimSiamアルゴリズムは単純であり,膨大な計算資源を必要としない。
その結果,自己教師付き表現学習に空間分解能の高いデータセットを用いることで,下流タスクの性能が向上することが実証された。
論文 参考訳(メタデータ) (2023-01-29T20:56:51Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
そこで我々は,網膜CT画像復調のためのDual-Merged Cycle-WGANと呼ばれる新しいサイクル一貫性生成適応ネットを提案する。
本モデルでは,2つのCycle-GANネットワークとデクリミネータとワッセルシュタイン損失を併用して,優れたトレーニング安定性と性能を実現する。
論文 参考訳(メタデータ) (2022-05-02T07:38:19Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
深層畳み込みニューラルネットワークを用いた画像データからのひび割れの分類について多くの研究がなされている。
本稿では,画像ノイズがネットワークの精度に与える影響について検討する。
AlexNetは提案したインデックスに基づいて最も効率的なモデルに選ばれた。
論文 参考訳(メタデータ) (2021-11-03T09:08:54Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - A Singular Value Perspective on Model Robustness [14.591622269748974]
我々は、自然に訓練され、逆向きに堅牢なCNNが、同じデータセットに対して非常に異なる特徴を利用することを示す。
画像ランクに対するCNNの依存性を理解するために,最初のランクベース特徴属性法であるランク統合勾配(RIG)を提案する。
論文 参考訳(メタデータ) (2020-12-07T08:09:07Z) - Temporal Distinct Representation Learning for Action Recognition [139.93983070642412]
2次元畳み込みニューラルネットワーク (2D CNN) はビデオの特徴付けに用いられる。
ビデオの異なるフレームは同じ2D CNNカーネルを共有しており、繰り返し、冗長な情報利用をもたらす可能性がある。
本稿では,異なるフレームからの特徴の識別チャネルを段階的にエキサイティングにするためのシーケンシャルチャネルフィルタリング機構を提案し,繰り返し情報抽出を回避する。
本手法は,ベンチマーク時相推論データセットを用いて評価し,それぞれ2.4%,1.3%の可視性向上を実現している。
論文 参考訳(メタデータ) (2020-07-15T11:30:40Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。