Robust Salient Object Detection on Compressed Images Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2409.13464v1
- Date: Fri, 20 Sep 2024 12:52:53 GMT
- Title: Robust Salient Object Detection on Compressed Images Using Convolutional Neural Networks
- Authors: Guibiao Liao, Wei Gao,
- Abstract summary: We are dedicated to benchmarking and analyzing CNN-based salient object detection on compressed images.
Our evaluation results reveal two key findings: 1) current state-of-the-art CNN-based SOD models, while excelling on clean images, exhibit significant performance bottlenecks when applied to compressed images.
We propose a simple yet promising baseline framework that focuses on robust feature representation learning to achieve robust CNN-based CI SOD.
- Score: 6.044094594551024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Salient object detection (SOD) has achieved substantial progress in recent years. In practical scenarios, compressed images (CI) serve as the primary medium for data transmission and storage. However, scant attention has been directed towards SOD for compressed images using convolutional neural networks (CNNs). In this paper, we are dedicated to strictly benchmarking and analyzing CNN-based salient object detection on compressed images. To comprehensively study this issue, we meticulously establish various CI SOD datasets from existing public SOD datasets. Subsequently, we investigate representative CNN-based SOD methods, assessing their robustness on compressed images (approximately 2.64 million images). Importantly, our evaluation results reveal two key findings: 1) current state-of-the-art CNN-based SOD models, while excelling on clean images, exhibit significant performance bottlenecks when applied to compressed images. 2) The principal factors influencing the robustness of CI SOD are rooted in the characteristics of compressed images and the limitations in saliency feature learning. Based on these observations, we propose a simple yet promising baseline framework that focuses on robust feature representation learning to achieve robust CNN-based CI SOD. Extensive experiments demonstrate the effectiveness of our approach, showcasing markedly improved robustness across various levels of image degradation, while maintaining competitive accuracy on clean data. We hope that our benchmarking efforts, analytical insights, and proposed techniques will contribute to a more comprehensive understanding of the robustness of CNN-based SOD algorithms, inspiring future research in the community.
Related papers
- Machine Perception-Driven Image Compression: A Layered Generative
Approach [32.23554195427311]
layered generative image compression model is proposed to achieve high human vision-oriented image reconstructed quality.
Task-agnostic learning-based compression model is proposed, which effectively supports various compressed domain-based analytical tasks.
Joint optimization schedule is adopted to acquire best balance point among compression ratio, reconstructed image quality, and downstream perception performance.
arXiv Detail & Related papers (2023-04-14T02:12:38Z) - Supervised and Contrastive Self-Supervised In-Domain Representation
Learning for Dense Prediction Problems in Remote Sensing [0.0]
This paper explores the effectiveness of in-domain representations in both supervised and self-supervised forms to solve the domain difference between remote sensing and the ImageNet dataset.
For self-supervised pre-training, we have utilized the SimSiam algorithm as it is simple and does not need huge computational resources.
Our results have demonstrated that using datasets with a high spatial resolution for self-supervised representation learning leads to high performance in downstream tasks.
arXiv Detail & Related papers (2023-01-29T20:56:51Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
arXiv Detail & Related papers (2022-05-02T07:38:19Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
arXiv Detail & Related papers (2021-11-03T09:08:54Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - A Singular Value Perspective on Model Robustness [14.591622269748974]
We show that naturally trained and adversarially robust CNNs exploit highly different features for the same dataset.
We propose Rank Integrated Gradients (RIG), the first rank-based feature attribution method to understand the dependence of CNNs on image rank.
arXiv Detail & Related papers (2020-12-07T08:09:07Z) - Temporal Distinct Representation Learning for Action Recognition [139.93983070642412]
Two-Dimensional Convolutional Neural Network (2D CNN) is used to characterize videos.
Different frames of a video share the same 2D CNN kernels, which may result in repeated and redundant information utilization.
We propose a sequential channel filtering mechanism to excite the discriminative channels of features from different frames step by step, and thus avoid repeated information extraction.
Our method is evaluated on benchmark temporal reasoning datasets Something-Something V1 and V2, and it achieves visible improvements over the best competitor by 2.4% and 1.3%, respectively.
arXiv Detail & Related papers (2020-07-15T11:30:40Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.