論文の概要: Contextualized AI for Cyber Defense: An Automated Survey using LLMs
- arxiv url: http://arxiv.org/abs/2409.13524v1
- Date: Fri, 20 Sep 2024 14:05:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:41:58.329752
- Title: Contextualized AI for Cyber Defense: An Automated Survey using LLMs
- Title(参考訳): サイバー防衛のためのコンテキストAI - LLMを用いた自動調査
- Authors: Christoforus Yoga Haryanto, Anne Maria Elvira, Trung Duc Nguyen, Minh Hieu Vu, Yoshiano Hartanto, Emily Lomempow, Arathi Arakala,
- Abstract要約: 本稿では,サイバー防御能力向上におけるコンテキストAIの可能性について検討する。
私たちは、組織的信頼とガバナンスフレームワークのギャップを指摘しながら、堅牢性、信頼性、統合方法に重点を置いています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper surveys the potential of contextualized AI in enhancing cyber defense capabilities, revealing significant research growth from 2015 to 2024. We identify a focus on robustness, reliability, and integration methods, while noting gaps in organizational trust and governance frameworks. Our study employs two LLM-assisted literature survey methodologies: (A) ChatGPT 4 for exploration, and (B) Gemma 2:9b for filtering with Claude 3.5 Sonnet for full-text analysis. We discuss the effectiveness and challenges of using LLMs in academic research, providing insights for future researchers.
- Abstract(参考訳): 本稿では,2015年から2024年にかけてのサイバー防衛能力向上におけるコンテキストAIの可能性について調査する。
私たちは、組織的信頼とガバナンスフレームワークのギャップを指摘しながら、堅牢性、信頼性、統合方法に重点を置いています。
文献調査手法として, (A) ChatGPT 4 と (B) Gemma 2:9b を用いた。
学術研究にLLMを使うことの有効性と課題について論じ,今後の研究者に洞察を提供する。
関連論文リスト
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
多くの新しいAIモデルとツールが提案され、世界中の研究者や学者が研究をより効果的かつ効率的に実施できるようにすることを約束している。
これらのツールの欠点と誤用の可能性に関する倫理的懸念は、議論の中で特に顕著な位置を占める。
論文 参考訳(メタデータ) (2025-02-07T18:26:45Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - ResearchArena: Benchmarking Large Language Models' Ability to Collect and Organize Information as Research Agents [21.17856299966841]
本研究では,学術調査における大規模言語モデル(LLM)の評価のためのベンチマークであるResearchArenaを紹介する。
これらの機会を養うため、12万のフルテキスト学術論文と7.9Kのサーベイ論文の環境を構築した。
論文 参考訳(メタデータ) (2024-06-13T03:26:30Z) - Automating Thematic Analysis: How LLMs Analyse Controversial Topics [5.025737475817937]
大規模言語モデル(LLM)は有望な分析ツールである。
本稿では,LLMが議論の的となっているトピックのテーマ分析をどのようにサポートするかを検討する。
本研究は,人間エージェントと機械エージェントのセマンティック分類における重なり合いと相違点に注目した。
論文 参考訳(メタデータ) (2024-05-11T05:28:25Z) - Large Language Model for Vulnerability Detection and Repair: Literature Review and the Road Ahead [12.324949480085424]
現在、脆弱性の検出と修復にLarge Language Modelsの利用に焦点を当てた調査は行われていない。
本稿では,LSMの活用による脆弱性検出と修復の改善を目的とした手法について,系統的な文献レビューを行う。
論文 参考訳(メタデータ) (2024-04-03T07:27:33Z) - Artificial Intelligence for Literature Reviews: Opportunities and Challenges [0.0]
この写本は、システム文献レビューにおける人工知能の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
従来の23の機能と11のAI機能を組み合わせたフレームワークを用いて、主要なSLRツール21について検討する。
論文 参考訳(メタデータ) (2024-02-13T16:05:51Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
大規模言語モデル(LLM)の台頭は、私たちの知性の理解に革命をもたらした。
本研究は, サイバーセキュリティの領域におけるLLMの防衛的, 敵的応用の徹底的な評価を, 既存の文献を考察した。
論文 参考訳(メタデータ) (2024-01-30T16:55:25Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。