Improving Interpretability of Deep Neural Networks in Medical Diagnosis
by Investigating the Individual Units
- URL: http://arxiv.org/abs/2107.08767v1
- Date: Mon, 19 Jul 2021 11:49:31 GMT
- Title: Improving Interpretability of Deep Neural Networks in Medical Diagnosis
by Investigating the Individual Units
- Authors: Woo-Jeoung Nam, Seong-Whan Lee
- Abstract summary: We demonstrate the efficiency of recent attribution techniques to explain the diagnostic decision by visualizing the significant factors in the input image.
Our analysis of unmasking machine intelligence represents the necessity of explainability in the medical diagnostic decision.
- Score: 24.761080054980713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As interpretability has been pointed out as the obstacle to the adoption of
Deep Neural Networks (DNNs), there is an increasing interest in solving a
transparency issue to guarantee the impressive performance. In this paper, we
demonstrate the efficiency of recent attribution techniques to explain the
diagnostic decision by visualizing the significant factors in the input image.
By utilizing the characteristics of objectness that DNNs have learned, fully
decomposing the network prediction visualizes clear localization of target
lesion. To verify our work, we conduct our experiments on Chest X-ray diagnosis
with publicly accessible datasets. As an intuitive assessment metric for
explanations, we report the performance of intersection of Union between visual
explanation and bounding box of lesions. Experiment results show that recently
proposed attribution methods visualize the more accurate localization for the
diagnostic decision compared to the traditionally used CAM. Furthermore, we
analyze the inconsistency of intentions between humans and DNNs, which is
easily obscured by high performance. By visualizing the relevant factors, it is
possible to confirm that the criterion for decision is in line with the
learning strategy. Our analysis of unmasking machine intelligence represents
the necessity of explainability in the medical diagnostic decision.
Related papers
- Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
We have developed an explainable AI methodology tailored for medical imaging.
We employ a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains.
This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions.
arXiv Detail & Related papers (2024-09-20T15:43:26Z) - Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
In medical imaging, discerning the rationale behind an AI model's predictions is crucial for evaluating its reliability.
We propose an explainable model that is equipped with both decision reasoning and feature identification capabilities.
By implementing our method, we can efficiently identify and visualise class-specific features leveraged by the data-driven model.
arXiv Detail & Related papers (2024-05-23T19:00:38Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and
Visual Explanations [4.022446255159328]
Interpretable deep learning models have received widespread attention in the field of image recognition.
Many interpretability models that have been proposed still have problems of insufficient accuracy and interpretability in medical image disease diagnosis.
We propose feature-driven inference network (FeaInfNet) to solve these problems.
arXiv Detail & Related papers (2023-12-04T13:09:00Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
We show how to adapt attribution robustness estimation methods to a given domain, so as to take into account domain-specific plausibility.
Next, we provide two methods, adversarial training and FAR training, to mitigate the brittleness characterized by DARE.
Finally, we empirically validate our methods with extensive experiments on three established biomedical benchmarks.
arXiv Detail & Related papers (2023-07-05T08:11:40Z) - Transparency of Deep Neural Networks for Medical Image Analysis: A
Review of Interpretability Methods [3.3918638314432936]
Deep neural networks have shown same or better performance than clinicians in many tasks.
Current deep neural solutions are referred to as black-boxes due to a lack of understanding of the specifics concerning the decision making process.
There is a need to ensure interpretability of deep neural networks before they can be incorporated in the routine clinical workflow.
arXiv Detail & Related papers (2021-11-01T01:42:26Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model.
Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features.
Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005)
arXiv Detail & Related papers (2020-08-04T12:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.