Beyond Accuracy Optimization: Computer Vision Losses for Large Language Model Fine-Tuning
- URL: http://arxiv.org/abs/2409.13641v1
- Date: Fri, 20 Sep 2024 16:46:17 GMT
- Title: Beyond Accuracy Optimization: Computer Vision Losses for Large Language Model Fine-Tuning
- Authors: Daniele Rege Cambrin, Giuseppe Gallipoli, Irene Benedetto, Luca Cagliero, Paolo Garza,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive performance across various tasks.
Current training approaches combine standard cross-entropy loss with extensive data, human feedback, or ad hoc methods to enhance performance.
This study investigates the use of established semantic segmentation loss functions in natural language generation to create a versatile, practical, and scalable solution.
- Score: 9.507070656654632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive performance across various tasks. However, current training approaches combine standard cross-entropy loss with extensive data, human feedback, or ad hoc methods to enhance performance. These solutions are often not scalable or feasible due to their associated costs, complexity, or resource requirements. This study investigates the use of established semantic segmentation loss functions in natural language generation to create a versatile, practical, and scalable solution for fine-tuning different architectures. We evaluate their effectiveness in solving Math Word Problems and question answering across different models of varying sizes. For the analyzed tasks, we found that the traditional Cross-Entropy loss represents a sub-optimal choice, while models trained to minimize alternative (task-dependent) losses, such as Focal or Lov\'asz, achieve a mean improvement of +42% on exact match without requiring additional data or human feedback. These findings suggest a promising pathway for more efficient and accessible training processes.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - Learning-to-Defer for Extractive Question Answering [3.6787328174619254]
We introduce an adapted two-stage Learning-to-Defer mechanism that enhances decision-making by enabling selective deference to human experts or larger models without retraining language models in the context of question-answering.
Our results demonstrate that deferring a minimal number of queries allows the smaller model to achieve performance comparable to their larger counterparts while preserving computing efficiency.
arXiv Detail & Related papers (2024-10-21T08:21:00Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Analyzing the Performance of Deep Encoder-Decoder Networks as Surrogates
for a Diffusion Equation [0.0]
We study the use of encoder-decoder convolutional neural network (CNN) as surrogates for steady-state diffusion solvers.
Our results indicate that increasing the size of the training set has a substantial effect on reducing performance fluctuations and overall error.
arXiv Detail & Related papers (2023-02-07T22:53:19Z) - Matching DNN Compression and Cooperative Training with Resources and
Data Availability [20.329698347331075]
How much and when an ML model should be compressed, and em where its training should be executed, are hard decisions to make.
We model the network system focusing on the training of DNNs, formalize the multi-dimensional problem, and formulate an approximate dynamic programming problem.
We prove that PACT's solutions can get as close to the optimum as desired, at the cost of an increased time complexity.
arXiv Detail & Related papers (2022-12-02T09:52:18Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
We study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality.
We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances.
Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance.
arXiv Detail & Related papers (2022-03-29T19:03:10Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.