論文の概要: Introducing MeMo: A Multimodal Dataset for Memory Modelling in Multiparty Conversations
- arxiv url: http://arxiv.org/abs/2409.13715v2
- Date: Tue, 15 Oct 2024 11:29:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:46:28.415401
- Title: Introducing MeMo: A Multimodal Dataset for Memory Modelling in Multiparty Conversations
- Title(参考訳): マルチパーティ会話におけるメモリモデリングのためのマルチモーダルデータセットMeMoの導入
- Authors: Maria Tsfasman, Bernd Dudzik, Kristian Fenech, Andras Lorincz, Catholijn M. Jonker, Catharine Oertel,
- Abstract要約: MeMo Corpusは参加者のメモリ保持レポートに注釈を付けた最初のデータセットである。
検証された振る舞いと知覚の計測、オーディオ、ビデオ、マルチモーダルアノテーションを統合する。
本稿では,知的システム開発のための対話型メモリモデリングにおける今後の研究の道を開くことを目的とする。
- 参考スコア(独自算出の注目度): 1.8896253910986929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational memory is the process by which humans encode, retain and retrieve verbal, non-verbal and contextual information from a conversation. Since human memory is selective, differing recollections of the same events can lead to misunderstandings and misalignments within a group. Yet, conversational facilitation systems, aimed at advancing the quality of group interactions, usually focus on tracking users' states within an individual session, ignoring what remains in each participant's memory after the interaction. Understanding conversational memory can be used as a source of information on the long-term development of social connections within a group. This paper introduces the MeMo corpus, the first conversational dataset annotated with participants' memory retention reports, aimed at facilitating computational modelling of human conversational memory. The MeMo corpus includes 31 hours of small-group discussions on Covid-19, repeated 3 times over the term of 2 weeks. It integrates validated behavioural and perceptual measures, audio, video, and multimodal annotations, offering a valuable resource for studying and modelling conversational memory and group dynamics. By introducing the MeMo corpus, analysing its validity, and demonstrating its usefulness for future research, this paper aims to pave the way for future research in conversational memory modelling for intelligent system development.
- Abstract(参考訳): 会話記憶とは、人間が会話から言語的、非言語的、文脈的な情報をエンコードし、保持し、取り出す過程である。
人間の記憶は選択的であるため、同じ出来事の異なる記憶は、グループ内の誤解や誤認識を引き起こす可能性がある。
しかし、グループ間相互作用の質向上を目的とした会話ファシリテーションシステムは、通常、個々のセッション内でユーザーの状態を追跡することに集中し、インタラクション後の各参加者の記憶に残されているものを無視する。
会話記憶を理解することは、グループ内の社会的つながりの長期的な発展に関する情報の源として利用することができる。
本稿では,人間の会話記憶の計算モデリングを容易にすることを目的とした,参加者の記憶保持レポートに注釈を付けた最初の会話データセットであるMeMoコーパスを紹介する。
MeMoのコーパスには、Covid-19に関する31時間の小グループディスカッションが含まれており、2週間にわたって3回繰り返している。
検証された行動と知覚の計測、オーディオ、ビデオ、マルチモーダルアノテーションを統合し、会話記憶とグループダイナミクスを研究しモデル化するための貴重なリソースを提供する。
本稿では,MeMoコーパスを導入し,その妥当性を分析し,今後の研究に役立つことを示すことにより,知的システム開発のための対話型メモリモデリングにおける今後の研究の道を開くことを目的とする。
関連論文リスト
- Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - Recursively Summarizing Enables Long-Term Dialogue Memory in Large
Language Models [75.98775135321355]
長い会話をすると、大きな言語モデル(LLM)は過去の情報を思い出さず、一貫性のない応答を生成する傾向がある。
本稿では,長期記憶能力を高めるために,大規模言語モデル(LLM)を用いて要約/メモリを生成することを提案する。
論文 参考訳(メタデータ) (2023-08-29T04:59:53Z) - UniMC: A Unified Framework for Long-Term Memory Conversation via
Relevance Representation Learning [15.313416157905685]
We propose a Unified framework for Long-term Memory Conversations (UniMC)。
主タスクを確率グラフに基づいて3つのサブタスクに分解する。
各サブタスクは、クエリとメモリ間の関連性を計算するための表現を学習する。
論文 参考訳(メタデータ) (2023-06-18T12:30:50Z) - MemoryBank: Enhancing Large Language Models with Long-Term Memory [7.654404043517219]
本稿では,大規模言語モデルに適した新しいメモリ機構であるMemoryBankを提案する。
MemoryBankは、モデルが関連するメモリを呼び出し、継続的なメモリ更新を通じて継続的に進化し、過去のインタラクションから情報を合成することで、ユーザの個性に適応することを可能にする。
論文 参考訳(メタデータ) (2023-05-17T14:40:29Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z) - Navigating Connected Memories with a Task-oriented Dialog System [13.117491508194242]
マルチターンで対話的な対話を通じて,ユーザがメディアコレクションを検索できるようにする強力なツールとして,コネクテッドメモリのためのダイアログを提案する。
新しいタスク指向のダイアログデータセットCOMETを使用し、シミュレーションされたパーソナルメモリグラフをベースとしたユーザ>アシスタントダイアログ(トータリング103k$発話)を含む。
COMETを分析し、意味のある進捗をベンチマークするために4つの主要なタスクを定式化し、最先端の言語モデルを強力なベースラインとして採用する。
論文 参考訳(メタデータ) (2022-11-15T19:31:57Z) - CoMPM: Context Modeling with Speaker's Pre-trained Memory Tracking for
Emotion Recognition in Conversation [0.0]
予め訓練されたメモリモジュール(PM)と組み合わせたコンテキスト埋め込みモジュール(CoM)を導入する。
事前学習した記憶は感情認識の最終的な精度を著しく向上させることを示す。
マルチパーティデータセット(MELD, EmoryNLP)とダイアドパーティデータセット(IEMOCAP, DailyDialog)の両方で実験を行った。
論文 参考訳(メタデータ) (2021-08-26T07:45:09Z) - Know Deeper: Knowledge-Conversation Cyclic Utilization Mechanism for
Open-domain Dialogue Generation [11.72386584395626]
エンドツーエンドのインテリジェントなニューラルダイアログシステムは、一貫性のない繰り返し応答を生成する問題に悩まされる。
既存の対話モデルは、対人関係の会話情報を対人情報の流れとして捉えた個人知識に組み込むことが、その後の会話の質を高めるという事実を無視しながら、対人関係の個人知識を一方的にダイアログに組み込むことに注意を払っている。
会話の一貫性を向上し、2つの折り畳みから繰り返しを緩和することを目的とした,会話適応型多視点対応対応型応答生成モデルを提案する。
論文 参考訳(メタデータ) (2021-07-16T08:59:06Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Vision-Dialog Navigation by Exploring Cross-modal Memory [107.13970721435571]
視覚ダイアログナビゲーションは、視覚言語ディシプリナターゲットの新たな聖杯タスクとして機能する。
本稿では,歴史的ナビゲーション行動に関連する豊富な情報を記憶し,理解するためのクロスモーダルメモリネットワーク(CMN)を提案する。
私たちのCMNは、従来の最先端モデルよりも、目に見える環境と目に見えない環境の両方で大きな差があります。
論文 参考訳(メタデータ) (2020-03-15T03:08:06Z) - Self-Attentive Associative Memory [69.40038844695917]
我々は、個々の体験(記憶)とその発生する関係(関連記憶)の記憶を分離することを提案する。
機械学習タスクの多様性において,提案した2メモリモデルと競合する結果が得られる。
論文 参考訳(メタデータ) (2020-02-10T03:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。