論文の概要: Knowing When to Ask -- Bridging Large Language Models and Data
- arxiv url: http://arxiv.org/abs/2409.13741v1
- Date: Tue, 10 Sep 2024 17:51:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:24:17.961135
- Title: Knowing When to Ask -- Bridging Large Language Models and Data
- Title(参考訳): 質問のタイミングを知る - 大規模言語モデルとデータのブリッジ
- Authors: Prashanth Radhakrishnan, Jennifer Chen, Bo Xu, Prem Ramaswami, Hannah Pho, Adriana Olmos, James Manyika, R. V. Guha,
- Abstract要約: 大規模言語モデル(LLM)は、数値および統計データやその他のタイムリーな事実を含むクエリに応答するときに、事実的に誤った情報を生成する傾向がある。
本稿では,LLMをData Commonsに統合することで,LCMの精度を高める手法を提案する。
- 参考スコア(独自算出の注目度): 3.111987311375933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are prone to generating factually incorrect information when responding to queries that involve numerical and statistical data or other timely facts. In this paper, we present an approach for enhancing the accuracy of LLMs by integrating them with Data Commons, a vast, open-source repository of public statistics from trusted organizations like the United Nations (UN), Center for Disease Control and Prevention (CDC) and global census bureaus. We explore two primary methods: Retrieval Interleaved Generation (RIG), where the LLM is trained to produce natural language queries to retrieve data from Data Commons, and Retrieval Augmented Generation (RAG), where relevant data tables are fetched from Data Commons and used to augment the LLM's prompt. We evaluate these methods on a diverse set of queries, demonstrating their effectiveness in improving the factual accuracy of LLM outputs. Our work represents an early step towards building more trustworthy and reliable LLMs that are grounded in verifiable statistical data and capable of complex factual reasoning.
- Abstract(参考訳): 大規模言語モデル(LLM)は、数値および統計データやその他のタイムリーな事実を含むクエリに応答するときに、事実的に誤った情報を生成する傾向がある。
本稿では、国連(UN)、疾病対策センター(CDC)、世界国勢調査局などの信頼できる機関の公開統計の膨大なオープンソースリポジトリであるData Commonsと統合して、LCMの精度を高めるためのアプローチを提案する。
データコモンズからデータを取得するための自然言語クエリを生成するためにLLMを訓練するRetrieval Interleaved Generation(RIG)と、関連するデータテーブルをData Commonsから取得してLLMのプロンプトを拡張するRetrieval Augmented Generation(RAG)の2つの主要な手法を検討する。
これらの手法を多種多様な問合せで評価し,LLM出力の実際の精度向上に有効であることを示す。
我々の研究は、検証可能な統計的データに基づいて、複雑な事実推論が可能な、信頼性が高く信頼性の高いLCMを構築するための初期のステップである。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models [0.0]
大規模言語モデル (LLM) はテキスト処理において例外的な性能を示した。
本稿では,ランダムフォレスト(RF)アンサンブルからの知識伝達を用いたLLMの学習手法を提案する。
我々は、細調整のためのアウトプットを生成し、その決定を分類し、説明するモデルの能力を高めます。
論文 参考訳(メタデータ) (2024-06-07T13:31:51Z) - SPOT: Text Source Prediction from Originality Score Thresholding [6.790905400046194]
対策は誤報を検出することを目的としており、通常、あらゆる情報の関連性を認識するために訓練されたドメイン固有モデルを含む。
情報の有効性を評価する代わりに,信頼の観点からLLM生成テキストを調べることを提案する。
論文 参考訳(メタデータ) (2024-05-30T21:51:01Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
我々は、ChatGPT、LLaMA、OPTを含む、主流の大規模言語モデル(LLM)に100万以上のクエリを実行します。
入力が極端に汚染された場合でも、ChatGPTは正しい答えを得ることができる。
そこで本研究では,LCMによる評価において,そのようなデータの有効性を大まかに決定する新たな指標を提案する。
論文 参考訳(メタデータ) (2023-05-15T15:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。