論文の概要: SPOT: Text Source Prediction from Originality Score Thresholding
- arxiv url: http://arxiv.org/abs/2405.20505v1
- Date: Thu, 30 May 2024 21:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:05:15.002952
- Title: SPOT: Text Source Prediction from Originality Score Thresholding
- Title(参考訳): SPOT: オリジナルスコアによるテキストソース予測
- Authors: Edouard Yvinec, Gabriel Kasser,
- Abstract要約: 対策は誤報を検出することを目的としており、通常、あらゆる情報の関連性を認識するために訓練されたドメイン固有モデルを含む。
情報の有効性を評価する代わりに,信頼の観点からLLM生成テキストを調べることを提案する。
- 参考スコア(独自算出の注目度): 6.790905400046194
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The wide acceptance of large language models (LLMs) has unlocked new applications and social risks. Popular countermeasures aim at detecting misinformation, usually involve domain specific models trained to recognize the relevance of any information. Instead of evaluating the validity of the information, we propose to investigate LLM generated text from the perspective of trust. In this study, we define trust as the ability to know if an input text was generated by a LLM or a human. To do so, we design SPOT, an efficient method, that classifies the source of any, standalone, text input based on originality score. This score is derived from the prediction of a given LLM to detect other LLMs. We empirically demonstrate the robustness of the method to the architecture, training data, evaluation data, task and compression of modern LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の広く受け入れられたことにより、新しいアプリケーションや社会的リスクが解き放たれた。
一般的な対策は、偽情報を検出することであり、通常、あらゆる情報の関連性を認識するために訓練されたドメイン固有モデルを含む。
情報の有効性を評価する代わりに,信頼の観点からLLM生成テキストを調べることを提案する。
本研究では,LLMや人間によって入力テキストが生成されるかどうかを知る能力として信頼を定義する。
そこで本研究では,本手法を用いて,本手法を用いてテキスト入力のソースを分類するSPOTを設計する。
このスコアは、他のLLMを検出するために与えられたLLMの予測から導かれる。
提案手法のアーキテクチャへの堅牢性, トレーニングデータ, 評価データ, タスク, 圧縮性を実証的に実証した。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
大型言語モデル (LLM) は人間の好むテキストを生成する。
本稿では,これらのモデルで共有される共通特性について述べる。
報奨モデルの検出能力をさらに向上する2つのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:38:33Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - LLM-Detector: Improving AI-Generated Chinese Text Detection with
Open-Source LLM Instruction Tuning [4.328134379418151]
既存のAI生成テキスト検出モデルでは、ドメイン内のオーバーフィットが難しくなる。
LLM-Detectorは文書レベルと文レベルのテキスト検出のための新しい手法である。
論文 参考訳(メタデータ) (2024-02-02T05:54:12Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
大規模言語モデル(LLM)は、高品質な人間によるテキストに非常に近い。
既存の検出ツールは、機械が生成したテキストと人間によるテキストしか区別できない。
本稿では,モデル固有,セキュア,効率的,拡張可能な検出ツールであるLLMDetを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:45:16Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
ファクトイドの問題に関する様々なプロンプトを考慮すれば、大きな言語モデル(LLM)は事実的に正しい答えを確実に生成できるだろうか?
LLMの事実知識を評価する統計的手法であるKaRRを提案する。
この結果から,同じバックボーン構造を持つLLMの知識はスケーリング法則に則っており,命令追従データに基づくチューニングは,実際に正しいテキストを確実に生成するモデルの能力を損なう場合があることがわかった。
論文 参考訳(メタデータ) (2023-05-17T18:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。