論文の概要: Thinking Before Speaking: A Role-playing Model with Mindset
- arxiv url: http://arxiv.org/abs/2409.13752v1
- Date: Sat, 14 Sep 2024 02:41:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 05:24:17.881650
- Title: Thinking Before Speaking: A Role-playing Model with Mindset
- Title(参考訳): 話す前に考える:マインドセットを用いたロールプレイングモデル
- Authors: Baohua Zhang, Yongyi Huang, Wenyao Cui, Huaping Zhang,
- Abstract要約: 大規模言語モデル(LLM)は人間の振る舞いをシミュレートする能力を持っている。
これらのモデルは、想定される役割が持たないという知識に直面すると、パフォーマンスが悪くなります。
本稿では,TBS(Thinking Before Talk)モデルを提案する。
- 参考スコア(独自算出の注目度): 0.6428333375712125
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Role-playing is an easy task for Large Language Models (LLMs), as they are skilled at simulating human behaviors. Many current studies have enabled LLMs to generate responses in the tone of a specific role by fine-tuning the models or using specialized prompts. However, it is typically easy to recognize when a role is being played by LLMs. These models tend to perform poorly when confronted with knowledge that the assumed role does not possess, or a question that requires the specific experience or logic of the role to answer. To address this problem and make LLMs act more like real roles, we propose a Thinking Before Speaking (TBS) model in this paper. Unlike other studies, we first extend the data based on the character's real-life scenarios and the historical dialogue, supplementing each pair of dialogue with the character's mindset. Then we add few data points that include elements beyond the role's knowledge, and fine-tune the LLMs. This approach can help LLMs adopt the role's thought process and logic, avoiding responses that fall outside the role's knowledge base. We have also prepared a dataset and evaluation metrics to test these capabilities. Experimental results show that our TBS model can better emulate a role in terms of tone, knowledge, and mindset.
- Abstract(参考訳): ロールプレイングは大きな言語モデル(LLM)にとって簡単なタスクであり、人間の振る舞いをシミュレートする能力がある。
多くの最近の研究で、LLMはモデルを微調整したり、特別なプロンプトを使って特定の役割のトーンで応答を生成できるようになった。
しかし、通常、ある役割がLLMによって演じられていることを認識するのは容易である。
これらのモデルは、仮定された役割が持たない知識や、答える役割の特定の経験や論理を必要とする疑問に直面すると、パフォーマンスが悪くなります。
本稿では,この問題に対処し,LLMを現実の役割として振る舞うために,TBS(Thinking Before Talk)モデルを提案する。
他の研究とは異なり、我々はまずキャラクターの現実のシナリオと過去の対話に基づいてデータを拡張し、キャラクターのマインドセットとの対話を補完する。
そして、ロールの知識以上の要素を含むデータポイントを少数追加し、LLMを微調整します。
このアプローチは、LLMがロールの思考プロセスとロジックを採用し、ロールの知識ベースから外れた応答を避けるのに役立つ。
これらの機能をテストするためのデータセットと評価指標も用意しました。
実験結果から、TBSモデルは、トーン、知識、マインドセットの観点での役割をよりうまくエミュレートできることが示された。
関連論文リスト
- NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
我々はジャーナリストのインタビューに焦点をあて、コミュニケーションの基盤と豊富なデータに富んだドメインに焦点をあてる。
我々はNPRとCNNから4万人の2人によるインフォメーションインタビューのデータセットをキュレートする。
LLMは、人間のインタビュアーよりも、認識を使い、より高いレベルの質問に目を向ける可能性がはるかに低い。
論文 参考訳(メタデータ) (2024-11-21T01:37:38Z) - Benchmarking Bias in Large Language Models during Role-Playing [21.28427555283642]
ロールプレイングにおいて,Large Language Models (LLMs) のバイアスを明らかにするために設計されたフェアネステストフレームワークであるBiasLensを紹介した。
提案手法では,11の属性からなる包括的属性からなる550個のソーシャルロールをLCMを用いて生成し,33,000個のロール固有の質問を生成する。
生成された質問をベンチマークとして、OpenAI、Mistral AI、Meta、Alibaba、DeepSeekがリリースした6つの高度なLCMの広範な評価を行う。
我々のベンチマークでは、LLM全体で72,716の偏りが見られ、個々のモデルは7,754から16,963の偏りが生じる。
論文 参考訳(メタデータ) (2024-11-01T13:47:00Z) - Language Models Show Stable Value Orientations Across Diverse Role-Plays [4.906478894661688]
多様なペルソナを取り入れつつも,大きな言語モデル(LLM)が一貫した価値指向を示すことを示す。
ランダムで多様なペルソナを持つLLMを促進させるロールプレイ・アット・スケール手法を提案する。
このアプローチは、様々なロールプレイシナリオにまたがるLLM応答における一貫したパターンを明らかにし、固有の傾向を深くエンコードしていることを示す。
論文 参考訳(メタデータ) (2024-08-16T23:24:10Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - Do Language Models Enjoy Their Own Stories? Prompting Large Language Models for Automatic Story Evaluation [15.718288693929019]
大規模言語モデル(LLM)は多くのNLPタスクで最先端のパフォーマンスを達成する。
LLMがヒトアノテーターの代用として使用できるかどうかを検討した。
LLMはシステムレベルの評価において,現在の自動測定値よりも優れていますが,十分な説明が得られていないことが分かりました。
論文 参考訳(メタデータ) (2024-05-22T15:56:52Z) - Character is Destiny: Can Role-Playing Language Agents Make Persona-Driven Decisions? [59.0123596591807]
我々は、ペルソナ駆動意思決定におけるLarge Language Models(LLM)の能力をベンチマークする。
高品質な小説において, LLM が先行する物語のキャラクターの判断を予測できるかどうかを検討する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は残されている。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z) - On the Decision-Making Abilities in Role-Playing using Large Language
Models [6.550638804145713]
大型言語モデル(LLM)はロールプレイングタスクにますます活用されている。
本稿では,LLMのポストロールプレイングにおける意思決定能力の評価に焦点をあてる。
論文 参考訳(メタデータ) (2024-02-29T02:22:23Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
本稿では,ロールプレイのための自己アライメント手法であるDittoを紹介する。
この方法は4000文字からなるロールプレイトレーニングセットを生成し、現在利用可能なデータセットのスケールを10倍に超える。
本稿では,ロールプレイ領域におけるクロススーパービジョンアライメント実験について紹介する。
論文 参考訳(メタデータ) (2024-01-23T03:56:22Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
大規模言語モデル(LLM)は、人間の振る舞いをシミュレートするエージェントとして用いられる。
本稿では, ベートーヴェン, クレオパトラ女王, ユリウス・カエサルなど, LLM に特定の人物として行動するように教えるキャラクタ-LLMを紹介する。
論文 参考訳(メタデータ) (2023-10-16T07:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。