Dynamically generated concatenated codes and their phase diagrams
- URL: http://arxiv.org/abs/2409.13801v2
- Date: Sat, 2 Nov 2024 02:17:12 GMT
- Title: Dynamically generated concatenated codes and their phase diagrams
- Authors: Grace M. Sommers, David A. Huse, Michael J. Gullans,
- Abstract summary: We formulate code concatenation as the action of a unitary quantum circuit on an expanding tree geometry.
In the presence of bulk errors, the coding phase is a type of spin glass, characterized by a distribution of failure probabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formulate code concatenation as the action of a unitary quantum circuit on an expanding tree geometry and find that for certain classes of gates, applied identically at each node, a binary tree circuit encodes a single logical qubit with code distance that grows exponentially in the depth of the tree. When there is noise in the bulk or at the end of this encoding circuit, the system undergoes a phase transition between a coding phase, where an optimal decoder can successfully recover logical information, and a non-coding phase. Leveraging the tree structure, we combine the formalism of "tensor enumerators" from quantum coding theory with standard recursive techniques for classical spin models on the Bethe lattice to explore these phases. In the presence of bulk errors, the coding phase is a type of spin glass, characterized by a distribution of failure probabilities. When the errors are heralded, the recursion relation is exactly solvable, giving us an analytic handle on the phase diagram.
Related papers
- Low-overhead non-Clifford fault-tolerant circuits for all non-chiral abelian topological phases [0.7873629568804646]
We propose a family of explicit geometrically local circuits on a 2-dimensional planar grid of qudits.
These circuits are constructed from measuring 1-form symmetries in discrete fixed-point path integrals.
We prove fault tolerance under arbitrary local (including non-Pauli) noise for a very general class of topological circuits.
arXiv Detail & Related papers (2024-03-18T18:00:00Z) - A Solvable Model of Quantum Darwinism-Encoding Transitions [0.0]
We consider a random Clifford circuit on an expanding tree, whose input qubit is entangled with a reference.
The model has a Quantum Darwinism phase, where one classical bit of information about the reference can be retrieved from an arbitrarily small fraction of the output qubits.
We relate our approach to measurement induced phase transitions (MIPTs) to a modified model where an environment eavesdrops on an encoding system.
arXiv Detail & Related papers (2023-05-05T17:14:57Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Error Correction Code Transformer [92.10654749898927]
We propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.
We encode each channel's output dimension to high dimension for better representation of the bits information to be processed separately.
The proposed approach demonstrates the extreme power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins at a fraction of their time complexity.
arXiv Detail & Related papers (2022-03-27T15:25:58Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Decodable hybrid dynamics of open quantum systems with Z_2 symmetry [0.0]
We explore a class of "open" quantum circuit models with local decoherence ("noise") and local projective measurements.
Within the spin glass phase the circuit dynamics can be interpreted as a quantum repetition code.
We devise a novel decoding algorithm for recovering an arbitrary initial qubit state in the code space.
arXiv Detail & Related papers (2021-08-09T18:07:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Quantum Error Source and Channel Coding [0.0]
We prove conditions on the set of correctable error patterns allowing for unambiguous decoding based on a lookup table.
We argue that quantum error correction is more aptly viewed as source compression in the sense of Shannon.
arXiv Detail & Related papers (2020-04-20T17:55:21Z) - Correcting spanning errors with a fractal code [7.6146285961466]
We propose an efficient decoder for the Fibonacci code'; a two-dimensional classical code that mimics the fractal nature of the cubic code.
We perform numerical experiments that show our decoder is robust to one-dimensional, correlated errors.
arXiv Detail & Related papers (2020-02-26T19:00:06Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.