Gravity as a mesoscopic system
- URL: http://arxiv.org/abs/2409.13808v1
- Date: Fri, 20 Sep 2024 18:00:00 GMT
- Title: Gravity as a mesoscopic system
- Authors: Pietro Pelliconi, Julian Sonner, Herman Verlinde,
- Abstract summary: We employ a probabilistic mesoscopic description to draw conceptual and quantitative analogies between Brownian motion and late-time fluctuations of thermal correlation functions.
We apply this formalism to the case of semiclassical gravity in AdS$_3$, showing that wormhole contributions can be naturally identified as moments of processes.
The outcome of this study shows that semiclassical gravity in AdS can be naturally interpreted as a mesoscopic description of quantum gravity, and a mesoscopic holographic duality can be framed as a moment-vs-probability-distribution duality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We employ a probabilistic mesoscopic description to draw conceptual and quantitative analogies between Brownian motion and late-time fluctuations of thermal correlation functions in generic chaotic systems respecting ETH. In this framework, thermal correlation functions of `simple' operators are described by stochastic processes, which are able to probe features of the microscopic theory only in a probabilistic sense. We apply this formalism to the case of semiclassical gravity in AdS$_3$, showing that wormhole contributions can be naturally identified as moments of stochastic processes. We also point out a `Matryoshka doll' recursive structure in which information is hidden in higher and higher moments, and which can be naturally justified within the stochastic framework. We then re-interpret the gravitational results from the boundary perspective, promoting the OPE data of the CFT to probability distributions. The outcome of this study shows that semiclassical gravity in AdS can be naturally interpreted as a mesoscopic description of quantum gravity, and a mesoscopic holographic duality can be framed as a moment-vs-probability-distribution duality.
Related papers
- An Operational Quantum Field Theoretic Model for Gravitationally Induced Entanglement [0.0]
We develop a quantum field-theoretic model of gravitationally induced entanglement between two massive objects in spatial superposition.
Using linearized quantum gravity in the static limit, we derive an effective Hamiltonian that induces entanglement between the field modes occupied by the masses.
We find that gravitationally induced entanglement leads to a decrease in visibility, consistent with previous nonrelativistic results.
arXiv Detail & Related papers (2025-03-26T18:00:00Z) - Entanglement cones and horizons in analogue cosmological production of Dirac fermions [49.1574468325115]
We study the appearance of fermion condensates for self-interacting Dirac fermions.
We show that the combined breakdown of time-reversal symmetry due to the expanding spacetime, and parity due to a pseudo-scalar condensate, manifest through the structure of the light-cone-like propagation of entanglement in this analogue cQFT.
arXiv Detail & Related papers (2025-03-24T22:20:16Z) - Thermodynamic phases in first detected return times of quantum many-body systems [0.0]
We study the probability distribution of the first return time to the initial state of a quantum many-body system.
We show that this distribution can be interpreted as a continuation of the canonical partition function of a spin chain with non-interacting domains at equilibrium.
arXiv Detail & Related papers (2023-11-09T18:47:07Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Coherent Fluctuations in Noisy Mesoscopic Systems, the Open Quantum SSEP
and Free Probability [0.0]
We show the dynamics of fluctuations of coherences in Q-SSEP have a natural interpretation as free cumulants.
We show how the link to free probability theory can be used to derive the time evolution of connected fluctuations of coherences.
arXiv Detail & Related papers (2022-04-25T14:19:01Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Probabilistic deconstruction of a theory of gravity, Part I: flat space [0.0]
We show that Einstein's equations of the theory arise in the semi-classical limit of the quantum evolution of probability under the process.
In particular, in flat Jackiw-Teitelboim gravity, the area of compactified space solved for by Einstein's equations can be identified as a probability density evolving under the Markovian process.
arXiv Detail & Related papers (2021-08-24T18:52:31Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Tomography in Loop Quantum Cosmology [0.0]
We analyze the tomographic representation for the Friedmann-Robertson-Walker (FRW) model within the Loop Quantum Cosmology framework.
We focus on the Wigner quasi-probability distributions associated with Gaussian and Schr"odinger cat states.
arXiv Detail & Related papers (2021-04-20T02:31:52Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.