Thermodynamic phases in first detected return times of quantum many-body systems
- URL: http://arxiv.org/abs/2311.05585v2
- Date: Thu, 14 Mar 2024 16:34:51 GMT
- Title: Thermodynamic phases in first detected return times of quantum many-body systems
- Authors: Benjamin Walter, Gabriele Perfetto, Andrea Gambassi,
- Abstract summary: We study the probability distribution of the first return time to the initial state of a quantum many-body system.
We show that this distribution can be interpreted as a continuation of the canonical partition function of a spin chain with non-interacting domains at equilibrium.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the probability distribution of the first return time to the initial state of a quantum many-body system subject to stroboscopic projective measurements. We show that this distribution can be interpreted as a continuation of the canonical partition function of a spin chain with non-interacting domains at equilibrium, which is entirely characterised by the Loschmidt amplitude of the quantum many-body system. This allows us to show that this probability may decay either algebraically or exponentially asymptotically in time, depending on whether the spin model displays a ferromagnetic or a paramagnetic phase. We illustrate this idea on the example of the return time of $N$ adjacent fermions in a tight-binding model, revealing a rich phase behaviour, which can be tuned by scaling the probing time with $N$. Our analytical predictions are corroborated by exact numerical computations.
Related papers
- Slow Relaxation in a Glassy Quantum Circuit [0.0]
We introduce and analyze a Floquet random quantum circuit that can be tuned between glassy and fully ergodic behavior.
Using an effective field theory for random quantum circuits, we analyze the correlations between quasienergy eigenstates.
We show that the ramp of the spectral form factor is enhanced by a factor of the number of sectors in the glassy regime.
arXiv Detail & Related papers (2024-10-30T17:58:08Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Quasiprobability distribution of work in the quantum Ising model [0.0]
We try to clarify the genuinely quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We examine the critical features related to a quantum phase transition and the role of the initial quantum coherence as useful resource.
arXiv Detail & Related papers (2023-02-22T10:07:49Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Finite-size criticality in fully connected spin models on
superconducting quantum hardware [0.0]
We exploit the new resources offered by quantum algorithms to detect the quantum critical behaviour of fully connected spin$-1/2$ models.
We propose a method based on variational algorithms run on superconducting transmon qubits.
arXiv Detail & Related papers (2022-08-04T16:00:34Z) - Accelerating the approach of dissipative quantum spin systems towards
stationarity through global spin rotations [0.0]
We consider open quantum systems governed by a time-independent Markovian Lindblad Master equation.
Such systems approach their stationary state on a timescale that is determined by the spectral gap of the generator of the Master equation dynamics.
We show that even far simpler transformations constructed by a global unitary spin rotation allow to exponentially speed up relaxation.
arXiv Detail & Related papers (2022-04-11T18:00:34Z) - Achieving spin-squeezed states by quench dynamics in a quantum chain [0.0]
We study the time evolution of spin squeezing in the one-dimensional spin-1/2 XY model subject to a sudden quantum quench of a transverse magnetic field.
Our analysis, based on exact results for the model, reveals that by a proper choice of protocol, a quantum quench from an unsqueezed state can create spin squeezed nonequilibrium states.
arXiv Detail & Related papers (2021-08-31T12:48:52Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Stochastic Path Integral Analysis of the Continuously Monitored Quantum
Harmonic Oscillator [0.0]
We deduce the evolution equations for position and momentum expectation values and the covariance matrix elements from the system's characteristic function.
Our results provide insights into the time dependence of the system during the measurement process, motivating their importance for quantum measurement engine/refrigerator experiments.
arXiv Detail & Related papers (2021-03-10T15:04:49Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Almost complete revivals in quantum many-body systems [0.0]
We show how to construct a quantum state such that a given spin 1/2 is maximally polarized initially and then exhibits an almost complete recovery of the initial polarization at a predetermined moment of time.
An experimental observation of such revivals may be utilized to benchmark quantum simulators with a measurement of only one local observable.
arXiv Detail & Related papers (2020-11-05T14:21:24Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.