論文の概要: Learning Ordering in Crystalline Materials with Symmetry-Aware Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.13851v1
- Date: Fri, 20 Sep 2024 18:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:50:50.924163
- Title: Learning Ordering in Crystalline Materials with Symmetry-Aware Graph Neural Networks
- Title(参考訳): 対称性を考慮したグラフニューラルネットワークを用いた結晶材料の学習順序付け
- Authors: Jiayu Peng, James Damewood, Jessica Karaguesian, Jaclyn R. Lunger, Rafael Gómez-Bombarelli,
- Abstract要約: グラフィカルニューラルネットワーク(GCNN)は、結晶材料の化学空間をスクリーニングする機械学習のワークホースとなっている。
我々は、多成分材料の秩序依存エネルギーを捉えるために、様々なニューラルネットワークアーキテクチャーをベンチマークする。
- 参考スコア(独自算出の注目度): 0.836362570897926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolutional neural networks (GCNNs) have become a machine learning workhorse for screening the chemical space of crystalline materials in fields such as catalysis and energy storage, by predicting properties from structures. Multicomponent materials, however, present a unique challenge since they can exhibit chemical (dis)order, where a given lattice structure can encompass a variety of elemental arrangements ranging from highly ordered structures to fully disordered solid solutions. Critically, properties like stability, strength, and catalytic performance depend not only on structures but also on orderings. To enable rigorous materials design, it is thus critical to ensure GCNNs are capable of distinguishing among atomic orderings. However, the ordering-aware capability of GCNNs has been poorly understood. Here, we benchmark various neural network architectures for capturing the ordering-dependent energetics of multicomponent materials in a custom-made dataset generated with high-throughput atomistic simulations. Conventional symmetry-invariant GCNNs were found unable to discern the structural difference between the diverse symmetrically inequivalent atomic orderings of the same material, while symmetry-equivariant model architectures could inherently preserve and differentiate the distinct crystallographic symmetries of various orderings.
- Abstract(参考訳): グラフ畳み込みニューラルネットワーク(GCNN)は、構造から特性を予測することにより、触媒やエネルギー貯蔵などの分野における結晶材料の化学空間をスクリーニングする機械学習のワークホースとなっている。
しかし、多成分材料は、与えられた格子構造が高次構造から完全に不規則な固体溶液まで、様々な元素配列を包含できる化学(非)秩序を示すことができるため、ユニークな課題である。
重要な点として、安定性、強度、触媒性能といった特性は構造だけでなく順序にも依存する。
したがって、厳密な材料設計を可能にするため、GCNNが原子配列を識別できることを保証することが重要である。
しかし、GCNNのオーダリング・アウェア能力はよく理解されていない。
本稿では,多成分材料の秩序に依存したエネルギーを,高スループット原子論シミュレーションで生成したカスタムデータセットで取得するニューラルネットワークアーキテクチャをベンチマークする。
従来の対称性不変なGCNNは、同じ物質の様々な対称非等価な原子配列の間の構造的差異を識別できないが、対称性等価なモデルアーキテクチャは本質的に様々な順序の異なる結晶対称性を保存し、区別することができる。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Exploring structure diversity in atomic resolution microscopy with graph neural networks [18.903519247639355]
ディープラーニングは、構造多様性を迅速で正確でインテリジェントな方法で探求するための強力なツールです。
この作業は、迅速で正確でインテリジェントな方法で構造多様性を探求する強力なツールを提供する。
論文 参考訳(メタデータ) (2024-10-23T07:48:35Z) - Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response [1.283555556182245]
異なるミクロ構造材料対称性を持つ複合材料は、工学的応用において一般的である。
異方性成分を持つ材料の効果的な均質化モデルを提供するニューラルネットワークアーキテクチャを提供する。
論文 参考訳(メタデータ) (2024-04-05T14:49:01Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Towards Symmetry-Aware Generation of Periodic Materials [64.21777911715267]
本稿では,周期構造体の物理対称性を捉える新しい物質生成手法であるSyMatを提案する。
SyMatは、変分オートエンコーダモデルを用いて、原子タイプセット、格子長、格子角を生成することによって、材料の原子タイプと格子を生成する。
我々は,SyMatが材料上のすべての対称性変換に理論的に不変であることを示し,SyMatがランダム生成および特性最適化タスクにおいて有望な性能を達成することを示す。
論文 参考訳(メタデータ) (2023-07-06T01:05:34Z) - Differentiable graph-structured models for inverse design of lattice
materials [0.0]
異なる環境条件に適応可能な物理化学的性質を有する建築材料は、材料科学の破壊的な新しい領域を具現化している。
正規および不規則な格子材料に対するグラフベース表現を用いた新しい計算手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T18:00:21Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
本稿では,結晶グラフ畳み込みニューラルネットワークフレームワークであるOrbital Graph Convolutional Neural Network (OGCNN)を提案する。
OGCNNには、材料特性を堅牢な方法で学習する原子軌道相互作用機能が含まれている。
本研究では, このモデルの性能について, 様々な特性を予測するために, 広範囲の結晶材料データを用いて検討した。
論文 参考訳(メタデータ) (2020-08-14T15:22:22Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。