論文の概要: Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning
- arxiv url: http://arxiv.org/abs/2409.13887v1
- Date: Fri, 20 Sep 2024 20:36:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:39:44.184906
- Title: Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning
- Title(参考訳): コントラスト学習を用いたグラフGCCAによる脳認識フィンガープリント
- Authors: Yixin Wang, Wei Peng, Yu Zhang, Ehsan Adeli, Qingyu Zhao, Kilian M. Pohl,
- Abstract要約: 縦断的神経画像研究は、脳機能と認知の間の動的相互作用を研究することによって、脳の老化と疾患の理解を改善することを目的としている。
本稿では,グラフ注意ネットワークと一般化相関解析を用いた教師なし学習モデルを提案する。
個々の人の独特の神経・認知表現型を反映した脳認知指紋を作成するために、モデルは個別化およびマルチモーダル・コントラスト学習にも依存する。
- 参考スコア(独自算出の注目度): 28.681229869236393
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many longitudinal neuroimaging studies aim to improve the understanding of brain aging and diseases by studying the dynamic interactions between brain function and cognition. Doing so requires accurate encoding of their multidimensional relationship while accounting for individual variability over time. For this purpose, we propose an unsupervised learning model (called \underline{\textbf{Co}}ntrastive Learning-based \underline{\textbf{Gra}}ph Generalized \underline{\textbf{Ca}}nonical Correlation Analysis (CoGraCa)) that encodes their relationship via Graph Attention Networks and generalized Canonical Correlational Analysis. To create brain-cognition fingerprints reflecting unique neural and cognitive phenotype of each person, the model also relies on individualized and multimodal contrastive learning. We apply CoGraCa to longitudinal dataset of healthy individuals consisting of resting-state functional MRI and cognitive measures acquired at multiple visits for each participant. The generated fingerprints effectively capture significant individual differences and outperform current single-modal and CCA-based multimodal models in identifying sex and age. More importantly, our encoding provides interpretable interactions between those two modalities.
- Abstract(参考訳): 多くの縦断的神経画像研究は、脳機能と認知の間の動的相互作用を研究することによって、脳の老化と疾患の理解を改善することを目的としている。
そのためには、時間とともに個々の変動を考慮しながら、それらの多次元関係を正確に符号化する必要がある。
そこで本研究では,グラフ注意ネットワークと一般化正準相関解析を用いて,それらの関係を符号化した教師なし学習モデル(‘underline{\textbf{Co}}ntrastive Learning-based \underline{\textbf{Gra}}ph Generalized \underline{\textbf{Ca}}nonical correlation Analysis(CoGraCa)’)を提案する。
個々の人の独特の神経・認知表現型を反映した脳認知指紋を作成するために、モデルは個別化およびマルチモーダルのコントラスト学習にも依存する。
安静時機能MRIと各参加者の複数訪問時に取得した認知的指標からなる健常者の縦断的データセットにCoGraCaを適用した。
生成された指紋は、性別と年齢を識別する上で、大きな個人差を効果的に捉え、現在のシングルモーダルモデルとCCAベースのマルチモーダルモデルより優れている。
さらに重要なのは、この2つのモダリティ間の解釈可能な相互作用を提供するエンコーディングです。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
本稿では,SEEGデータとEEGデータのいずれかを事前学習できる脳信号の自己教師型学習フレームワークについて検討する。
そこで我々は,異なるチャネル間の空間的および時間的相関を暗黙的に学習するために,MBrainを提案する。
我々のモデルは、最先端のSSLおよび教師なしモデルよりも優れており、臨床に展開する能力を持っている。
論文 参考訳(メタデータ) (2023-06-15T09:14:26Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
深部グラフニューラルネットワーク(GNN)よりもかなり浅いモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,有向接続グラフを推定する。
統合失調症患者とコントロールを分類した機能的ニューロイメージングデータセットについて報告する。
論文 参考訳(メタデータ) (2021-11-01T21:50:35Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
マルチモーダル機能磁気共鳴イメージング(fMRI)を使用して、脳の接続ネットワークに基づいて個々の行動特性および認知特性を予測することができます。
本稿では,fMRI時系列と各脳領域間の機能接続(FC)を組み込んだ,解釈可能な多モードグラフ畳み込みネットワーク(MGCN)モデルを提案する。
我々は、フィラデルフィア神経開発コホート上のMGCNモデルを検証し、個々の広範囲達成テスト(WRAT)スコアを予測します。
論文 参考訳(メタデータ) (2021-01-20T20:53:07Z) - Longitudinal Self-Supervised Learning [13.094393751939837]
グラウンド・トゥルース・ラベルは神経科学においてしばしば欠落しているか高価である。
本稿では,MRIと潜在画像表現の関連因子間の多変量写像を定式化することにより,歪みの新たな定義を提案する。
我々は、画像表現から脳年齢を乱すコサインロスを伴う標準的な自動符号化構造を用いて、LSSL(Longitudinal Self-Supervised Learning)というモデルを実装した。
論文 参考訳(メタデータ) (2020-06-12T03:35:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。