論文の概要: Brain dynamics via Cumulative Auto-Regressive Self-Attention
- arxiv url: http://arxiv.org/abs/2111.01271v1
- Date: Mon, 1 Nov 2021 21:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-03 22:50:44.704606
- Title: Brain dynamics via Cumulative Auto-Regressive Self-Attention
- Title(参考訳): 累積自己回帰自己注意による脳動態
- Authors: Usman Mahmood, Zening Fu, Vince Calhoun, Sergey Plis
- Abstract要約: 深部グラフニューラルネットワーク(GNN)よりもかなり浅いモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,有向接続グラフを推定する。
統合失調症患者とコントロールを分類した機能的ニューロイメージングデータセットについて報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate dynamical processes can often be intuitively described by a
weighted connectivity graph between components representing each individual
time-series. Even a simple representation of this graph as a Pearson
correlation matrix may be informative and predictive as demonstrated in the
brain imaging literature. However, there is a consensus expectation that
powerful graph neural networks (GNNs) should perform better in similar
settings. In this work, we present a model that is considerably shallow than
deep GNNs, yet outperforms them in predictive accuracy in a brain imaging
application. Our model learns the autoregressive structure of individual time
series and estimates directed connectivity graphs between the learned
representations via a self-attention mechanism in an end-to-end fashion. The
supervised training of the model as a classifier between patients and controls
results in a model that generates directed connectivity graphs and highlights
the components of the time-series that are predictive for each subject. We
demonstrate our results on a functional neuroimaging dataset classifying
schizophrenia patients and controls.
- Abstract(参考訳): 多変量動的プロセスは、個々の時系列を表すコンポーネント間の重み付け接続グラフによって直感的に記述されることが多い。
このグラフをピアソン相関行列として単純な表現であっても、脳画像文献で示されるように、有益で予測的である。
しかしながら、強力なグラフニューラルネットワーク(GNN)は、同様の設定でより良いパフォーマンスを期待されている。
本研究では,脳画像アプリケーションにおいて,深部GNNよりもかなり浅く,予測精度に優れるモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,学習した表現間の有向接続グラフを,エンドツーエンドで自己認識機構を用いて推定する。
患者とコントロール間の分類器としてのモデルの教師付きトレーニングにより、有向接続グラフを生成し、各被験者に予測される時系列の構成要素を強調するモデルが得られる。
統合失調症患者とコントロールを分類する機能的神経画像データセットについて検討した。
関連論文リスト
- DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Neural Graphical Models [2.6842860806280058]
本稿では,複雑な特徴依存を合理的な計算コストで表現するために,NGM(Neural Graphical Models)を導入する。
ニューラルネットワークをマルチタスク学習フレームワークとして使用することにより,機能間の依存関係構造と複雑な関数表現をキャプチャする。
NGMは、有向グラフ、無向グラフ、混合エッジグラフを含む一般的なグラフ構造に適合し、混合入力データ型をサポートする。
論文 参考訳(メタデータ) (2022-10-02T07:59:51Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
我々はニューラルネットワークトレーニング(DECENNT)による動的有効接続推定を開発する。
DECENNTは5つの異なるタスクに対して最先端(SOTA)メソッドを上回り、解釈可能なタスク固有の動的グラフを推論する。
論文 参考訳(メタデータ) (2022-02-04T21:14:21Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
論文 参考訳(メタデータ) (2021-09-26T07:19:47Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
本稿では,脳コネクトームの動的グラフ表現を時間的注意とともに学習するSTAGINを提案する。
HCP-RestとHCP-Taskデータセットの実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-27T23:06:50Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。