論文の概要: Nonlinear Inverse Design of Mechanical Multi-Material Metamaterials Enabled by Video Denoising Diffusion and Structure Identifier
- arxiv url: http://arxiv.org/abs/2409.13908v1
- Date: Sat, 28 Sep 2024 20:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:39:44.101402
- Title: Nonlinear Inverse Design of Mechanical Multi-Material Metamaterials Enabled by Video Denoising Diffusion and Structure Identifier
- Title(参考訳): ビデオデノイング拡散と構造同定によるメカニカル多元系メタマテリアルの非線形逆設計
- Authors: Jaewan Park, Shashank Kushwaha, Junyan He, Seid Koric, Qibang Liu, Iwona Jasiuk, Diab Abueidda,
- Abstract要約: 本稿では非線形応力-ひずみ応答に基づく逆多材料設計のための新しい枠組みを提案する。
複数の材料, 塑性, 大変形を組み込むことで, メタマテリアルの高非線形力学的挙動の制御を高度化することができる。
- 参考スコア(独自算出の注目度): 2.624762732763203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metamaterials, synthetic materials with customized properties, have emerged as a promising field due to advancements in additive manufacturing. These materials derive unique mechanical properties from their internal lattice structures, which are often composed of multiple materials that repeat geometric patterns. While traditional inverse design approaches have shown potential, they struggle to map nonlinear material behavior to multiple possible structural configurations. This paper presents a novel framework leveraging video diffusion models, a type of generative artificial Intelligence (AI), for inverse multi-material design based on nonlinear stress-strain responses. Our approach consists of two key components: (1) a fields generator using a video diffusion model to create solution fields based on target nonlinear stress-strain responses, and (2) a structure identifier employing two UNet models to determine the corresponding multi-material 2D design. By incorporating multiple materials, plasticity, and large deformation, our innovative design method allows for enhanced control over the highly nonlinear mechanical behavior of metamaterials commonly seen in real-world applications. It offers a promising solution for generating next-generation metamaterials with finely tuned mechanical characteristics.
- Abstract(参考訳): メタマテリアルは、添加物製造の進歩により、将来性のある分野として、カスタマイズされた特性を持つ合成材料である。
これらの材料は内部の格子構造から独特の機械的特性を導き出し、しばしば幾何学的パターンを繰り返す複数の材料から構成される。
従来の逆設計アプローチは潜在的な可能性を示しているが、非線形材料挙動を複数の可能な構造構造にマッピングするのに苦労している。
本稿では, 非線形応力-ひずみ応答に基づく逆多材料設計のためのビデオ拡散モデル, 生成人工知能(AI)を利用した新しいフレームワークを提案する。
提案手法は,(1) 対象の非線形応力-ひずみ応答に基づく解場生成のためのビデオ拡散モデルを用いたフィールドジェネレータと,(2) 対応する多材料2D設計を決定するための2つのUNetモデルを用いた構造識別子からなる。
複数の材料、塑性、大きな変形を取り入れることで、我々の革新的な設計手法は、現実の応用でよく見られるメタマテリアルの高非線形力学的挙動の制御を強化することができる。
機械的特性を微調整した次世代メタマテリアルを生成するための有望なソリューションを提供する。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Machine Learning-Guided Design of Non-Reciprocal and Asymmetric Elastic Chiral Metamaterials [0.0]
本稿では, 靭帯接触角, 靭帯形状, 円半径など, キラルなメタマテリアルの設計空間を定義した。
次に、機械学習アプローチ、特にベイズ最適化を活用して、最大非相互性あるいは剛性非対称性を満たす最適な設計を行う。
この機構を解析したところ, 異なる方向の荷重下で複数の異なる接触状態を示すことができるキラルなメタマテリアルは, 高い非相反性と剛性非対称性の両方を同時に示すことができることがわかった。
論文 参考訳(メタデータ) (2024-04-19T23:39:56Z) - Guided Diffusion for Fast Inverse Design of Density-based Mechanical Metamaterials [41.97258566607252]
本稿では, ボクセルをベースとしたメカニカルメタマテリアルを生成するために, コアが高度な深層生成AIアルゴリズムである高速逆設計法を提案する。
具体的には, 1283ドルの分解能を持つマイクロ構造を生成できる自己条件拡散モデルを用いて, 特定の均質化行列にわずか3秒でアプローチする。
論文 参考訳(メタデータ) (2024-01-24T16:31:50Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Differentiable graph-structured models for inverse design of lattice
materials [0.0]
異なる環境条件に適応可能な物理化学的性質を有する建築材料は、材料科学の破壊的な新しい領域を具現化している。
正規および不規則な格子材料に対するグラフベース表現を用いた新しい計算手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T18:00:21Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
本稿では、プロセスモデリング、材料均質化、機械学習に基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
論文 参考訳(メタデータ) (2020-03-20T20:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。