SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval
- URL: http://arxiv.org/abs/2409.13992v1
- Date: Sat, 21 Sep 2024 03:03:09 GMT
- Title: SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval
- Authors: Jiatao Li, Xinyu Hu, Xiaojun Wan,
- Abstract summary: Retrieval-Augmented Generation (RAG) has greatly improved large language models (LLMs) by enabling them to generate accurate, contextually grounded responses.
RAG approaches, which prioritize top-ranked documents based solely on query-context relevance, often introduce redundancy and conflicting information.
We propose Selection using Matrices for Augmented Retrieval (RAG) in question answering tasks, a fully unsupervised and training-free framework designed to optimize context selection in RAG.
- Score: 40.17823569905232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has greatly improved large language models (LLMs) by enabling them to generate accurate, contextually grounded responses through the integration of external information. However, conventional RAG approaches, which prioritize top-ranked documents based solely on query-context relevance, often introduce redundancy and conflicting information. This issue is particularly evident in unsupervised retrieval settings, where there are no mechanisms to effectively mitigate these problems, leading to suboptimal context selection. To address this, we propose Selection using Matrices for Augmented Retrieval (SMART) in question answering tasks, a fully unsupervised and training-free framework designed to optimize context selection in RAG. SMART leverages Determinantal Point Processes (DPPs) to simultaneously model relevance, diversity and conflict, ensuring the selection of potentially high-quality contexts. Experimental results across multiple datasets demonstrate that SMART significantly enhances QA performance and surpasses previous unsupervised context selection methods, showing a promising strategy for RAG.
Related papers
- RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
Large language models (LLMs) have achieved impressive performance but face high computational costs and latency.
Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs.
We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization.
arXiv Detail & Related papers (2025-02-16T04:56:53Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.
A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.
To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
arXiv Detail & Related papers (2025-01-25T14:24:50Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - First Token Probability Guided RAG for Telecom Question Answering [15.854941373238226]
Retrieval-Augmented Generation (RAG) has shown a distinct advantage in incorporating domain-specific information into Large Language Models (LLMs)
We propose a novel first token probability guided RAG framework to tackle the challenges of Multiple Choice Question Answering (MCQA) in telecommunications.
arXiv Detail & Related papers (2025-01-11T07:47:31Z) - Re-ranking the Context for Multimodal Retrieval Augmented Generation [28.63893944806149]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context.
RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output.
We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate
arXiv Detail & Related papers (2025-01-08T18:58:22Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
Large Language Models (LLMs) are essential tools for various natural language processing tasks but often suffer from generating outdated or incorrect information.
Retrieval-Augmented Generation (RAG) addresses this issue by incorporating external, real-time information retrieval to ground LLM responses.
To tackle this problem, we propose Multi-Agent Filtering Retrieval-Augmented Generation (MAIN-RAG)
MAIN-RAG is a training-free RAG framework that leverages multiple LLM agents to collaboratively filter and score retrieved documents.
arXiv Detail & Related papers (2024-12-31T08:07:26Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG)
We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results.
When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks.
arXiv Detail & Related papers (2024-07-16T18:09:21Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.