Uncertainty Aware Human-machine Collaboration in Camouflaged Object Detection
- URL: http://arxiv.org/abs/2502.08373v1
- Date: Wed, 12 Feb 2025 13:05:24 GMT
- Title: Uncertainty Aware Human-machine Collaboration in Camouflaged Object Detection
- Authors: Ziyue Yang, Kehan Wang, Yuhang Ming, Yong Peng, Han Yang, Qiong Chen, Wanzeng Kong,
- Abstract summary: A key step toward developing trustworthy COD systems is the estimation and effective utilization of uncertainty.
In this work, we propose a human-machine collaboration framework for classifying the presence of camouflaged objects.
Our approach introduces a multiview backbone to estimate uncertainty in CV model predictions, utilizes this uncertainty during training to improve efficiency, and defers low-confidence cases to human evaluation.
- Score: 12.2304109417748
- License:
- Abstract: Camouflaged Object Detection (COD), the task of identifying objects concealed within their environments, has seen rapid growth due to its wide range of practical applications. A key step toward developing trustworthy COD systems is the estimation and effective utilization of uncertainty. In this work, we propose a human-machine collaboration framework for classifying the presence of camouflaged objects, leveraging the complementary strengths of computer vision (CV) models and noninvasive brain-computer interfaces (BCIs). Our approach introduces a multiview backbone to estimate uncertainty in CV model predictions, utilizes this uncertainty during training to improve efficiency, and defers low-confidence cases to human evaluation via RSVP-based BCIs during testing for more reliable decision-making. We evaluated the framework in the CAMO dataset, achieving state-of-the-art results with an average improvement of 4.56\% in balanced accuracy (BA) and 3.66\% in the F1 score compared to existing methods. For the best-performing participants, the improvements reached 7.6\% in BA and 6.66\% in the F1 score. Analysis of the training process revealed a strong correlation between our confidence measures and precision, while an ablation study confirmed the effectiveness of the proposed training policy and the human-machine collaboration strategy. In general, this work reduces human cognitive load, improves system reliability, and provides a strong foundation for advancements in real-world COD applications and human-computer interaction. Our code and data are available at: https://github.com/ziyuey/Uncertainty-aware-human-machine-collaboration-in-camouflaged-object-identi fication.
Related papers
- Uncertainty Quantification for Collaborative Object Detection Under Adversarial Attacks [6.535251134834875]
Collaborative Object Detection (COD) and collaborative perception can integrate data or features from various entities.
adversarial attacks pose a potential threat to the deep learning COD models.
We propose the Trusted Uncertainty Quantification in Collaborative Perception framework (TUQCP)
arXiv Detail & Related papers (2025-02-04T18:03:32Z) - KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models [2.7378790256389047]
This paper introduces a novel two-stage framework for knowledge-driven reliability analysis, integrating IDHEAS and LLMs (KRAIL)
Inspired by the success of large language models (LLMs) in natural language processing, this paper introduces a novel two-stage framework for knowledge-driven reliability analysis.
arXiv Detail & Related papers (2024-12-20T06:21:34Z) - Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks [26.422616504640786]
We propose a novel individual attack method, Probability Margin Attack (PMA), which defines the adversarial margin in the probability space rather than the logits space.
We create a million-scale dataset, CC1M, and use it to conduct the first million-scale adversarial robustness evaluation of adversarially-trained ImageNet models.
arXiv Detail & Related papers (2024-11-20T10:41:23Z) - A practical approach to evaluating the adversarial distance for machine learning classifiers [2.2120851074630177]
This paper investigates the estimation of the more informative adversarial distance using iterative adversarial attacks and a certification approach.
We find that our adversarial attack approach is effective compared to related implementations, while the certification method falls short of expectations.
arXiv Detail & Related papers (2024-09-05T14:57:01Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Neural Network Repair with Reachability Analysis [10.384532888747993]
Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control.
This research proposes a framework to repair unsafe DNNs in safety-critical systems with reachability analysis.
arXiv Detail & Related papers (2021-08-09T17:56:51Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.