論文の概要: When Witnesses Defend: A Witness Graph Topological Layer for Adversarial Graph Learning
- arxiv url: http://arxiv.org/abs/2409.14161v2
- Date: Tue, 24 Sep 2024 13:51:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 03:22:11.973914
- Title: When Witnesses Defend: A Witness Graph Topological Layer for Adversarial Graph Learning
- Title(参考訳): Witnesses Defend: 逆グラフ学習のためのWitness Graph Topological Layer
- Authors: Naheed Anjum Arafat, Debabrota Basu, Yulia Gel, Yuzhou Chen,
- Abstract要約: 逆グラフ学習を計算トポロジー、すなわちグラフの永続的ホモロジー表現から新たなツールで橋渡しする。
グラフ上の逆解析において、グラフ全体の位相情報の損失を最小限に抑えながら、グラフの健全な形状特性にのみ焦点をあてることのできる証人複体の概念を導入する。
証人機構を組み込んだWitness Graph Topological Layer (WGTL) を設計し、局所的およびグローバルなトポロジカルグラフの特徴表現を体系的に統合し、その影響を頑健な正規化されたトポロジ的損失によって自動的に制御する。
- 参考スコア(独自算出の注目度): 19.566775406771757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capitalizing on the intuitive premise that shape characteristics are more robust to perturbations, we bridge adversarial graph learning with the emerging tools from computational topology, namely, persistent homology representations of graphs. We introduce the concept of witness complex to adversarial analysis on graphs, which allows us to focus only on the salient shape characteristics of graphs, yielded by the subset of the most essential nodes (i.e., landmarks), with minimal loss of topological information on the whole graph. The remaining nodes are then used as witnesses, governing which higher-order graph substructures are incorporated into the learning process. Armed with the witness mechanism, we design Witness Graph Topological Layer (WGTL), which systematically integrates both local and global topological graph feature representations, the impact of which is, in turn, automatically controlled by the robust regularized topological loss. Given the attacker's budget, we derive the important stability guarantees of both local and global topology encodings and the associated robust topological loss. We illustrate the versatility and efficiency of WGTL by its integration with five GNNs and three existing non-topological defense mechanisms. Our extensive experiments across six datasets demonstrate that WGTL boosts the robustness of GNNs across a range of perturbations and against a range of adversarial attacks, leading to relative gains of up to 18%.
- Abstract(参考訳): 形状特性が摂動に対してより堅牢であるという直感的な前提に基づいて、計算トポロジー、すなわちグラフの永続的ホモロジー表現から生まれたツールで、逆グラフ学習を橋渡しする。
グラフ上の逆解析に証人複体の概念を導入し、グラフ全体の位相情報の最小の損失を伴い、最も本質的なノード(ランドマーク)のサブセットによって得られるグラフの健全な形状特性にのみ焦点を合わせることができる。
残りのノードは証人として使われ、どの上位グラフサブ構造が学習プロセスに組み込まれているかを規定する。
証人機構を組み込んだWitness Graph Topological Layer (WGTL) を設計し、局所的およびグローバルなトポロジカルグラフの特徴表現を体系的に統合し、その影響を頑健な正規化されたトポロジ的損失によって自動的に制御する。
攻撃者の予算を考えると、局所的およびグローバルなトポロジエンコーディングとそれに伴うロバストなトポロジロスの重要な安定性を保証する。
5つのGNNと3つの既存の非トポロジ的防御機構を統合し,WGTLの汎用性と効率性について述べる。
6つのデータセットにわたる広範な実験により、WGTLは、様々な摂動、および様々な敵攻撃に対するGNNの堅牢性を高め、最大18%の相対的な増加をもたらすことが示された。
関連論文リスト
- TopoGCL: Topological Graph Contrastive Learning [32.993034801654105]
グラフコントラスト学習(GCL)は、グラフニューラルネットワーク(GNN)の強みを活かす新しい概念として最近登場した。
グラフ上の位相不変性と拡張持続性の概念をGCLに導入する。
以上の結果から,新しいトポロジカルグラフコントラスト学習(TopoGCL)モデルは,12の考察データセットのうち11の教師なしグラフ分類において,大幅な性能向上を実現し,ノイズのあるシナリオ下で頑健性を示した。
論文 参考訳(メタデータ) (2024-06-25T03:35:20Z) - On the Topology Awareness and Generalization Performance of Graph Neural Networks [6.598758004828656]
我々は,GNNのトポロジ的認識をいかなるトポロジ的特徴においても特徴付けるための包括的枠組みを導入する。
本研究は,各ベンチマークデータセットの経路距離を最短とする内在グラフを用いたケーススタディである。
論文 参考訳(メタデータ) (2024-03-07T13:33:30Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Topological Pooling on Graphs [24.584372324701885]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ学習タスクにおいて大きな成功を収めている。
そこで我々は,新しいトポロジカルプール層とビジター複合型トポロジカル埋め込み機構を提案する。
Wit-TopoPoolは、すべてのデータセットで競合他社よりも大幅に優れています。
論文 参考訳(メタデータ) (2023-03-25T19:30:46Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
トポロジー不均衡は、ラベル付きノードの不均一なトポロジー位置によって引き起こされるグラフ固有の不均衡問題である。
PASTEL という新しい位置認識型グラフ構造学習フレームワークを提案する。
私たちの重要な洞察は、より監督的な情報を得るために、同じクラス内のノードの接続性を高めることです。
論文 参考訳(メタデータ) (2022-08-17T14:04:21Z) - Revisiting Adversarial Attacks on Graph Neural Networks for Graph
Classification [38.339503144719984]
本稿では,グラフ構造とノード特徴を操作することで,敵の例を生成する新しい汎用フレームワークを提案する。
具体的には,グラフ分類タスクに対応するノードレベルの重要度を生成するために,グラフクラスマッピングとその変種を利用する。
6つの実世界のベンチマークで4つの最先端グラフ分類モデルを攻撃する実験は、我々のフレームワークの柔軟性と有効性を検証する。
論文 参考訳(メタデータ) (2022-08-13T13:41:44Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Topological Relational Learning on Graphs [2.4692806302088868]
グラフニューラルネットワーク(GNN)は、グラフ分類と表現学習のための強力なツールとして登場した。
本稿では,GNNに高階グラフ情報を統合可能な新しいトポロジカルリレーショナル推論(TRI)を提案する。
新しいTRI-GNNは、6つの7つのグラフで14の最先端のベースラインを上回り、摂動に対して高い堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2021-10-29T04:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。