論文の概要: UniMo: Universal Motion Correction For Medical Images without Network Retraining
- arxiv url: http://arxiv.org/abs/2409.14204v1
- Date: Sat, 21 Sep 2024 17:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 23:37:15.982283
- Title: UniMo: Universal Motion Correction For Medical Images without Network Retraining
- Title(参考訳): UniMo: ネットワークリトレーニングなしの医用画像のユニバーサルモーション補正
- Authors: Jian Wang, Razieh Faghihpirayesh, Danny Joca, Polina Golland, Ali Gholipour,
- Abstract要約: 我々は、深層ニューラルネットワークを利用したユニバーサルモーション補正フレームワークを導入し、多様な画像モダリティをまたいだ動き補正の課題に取り組む。
提案手法では,ニューラルネットワークアーキテクチャと同変フィルタを併用し,現行モデルの限界を克服する。
モーション補正のための総合的なソリューションを提供することで、UniMoは医療画像の大幅な進歩を示す。
- 参考スコア(独自算出の注目度): 6.056874891819278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a Universal Motion Correction (UniMo) framework, leveraging deep neural networks to tackle the challenges of motion correction across diverse imaging modalities. Our approach employs advanced neural network architectures with equivariant filters, overcoming the limitations of current models that require iterative inference or retraining for new image modalities. UniMo enables one-time training on a single modality while maintaining high stability and adaptability for inference across multiple unseen image modalities. We developed a joint learning framework that integrates multimodal knowledge from both shape and images that faithfully improve motion correction accuracy despite image appearance variations. UniMo features a geometric deformation augmenter that enhances the robustness of global motion correction by addressing any local deformations whether they are caused by object deformations or geometric distortions, and also generates augmented data to improve the training process. Our experimental results, conducted on various datasets with four different image modalities, demonstrate that UniMo surpasses existing motion correction methods in terms of accuracy. By offering a comprehensive solution to motion correction, UniMo marks a significant advancement in medical imaging, especially in challenging applications with wide ranges of motion, such as fetal imaging. The code for this work is available online, https://github.com/IntelligentImaging/UNIMO/.
- Abstract(参考訳): 本稿では,深層ニューラルネットワークを利用したユニバーサルモーション補正(UniMo)フレームワークを提案する。
提案手法では,新しい画像モダリティの反復推論や再学習を必要とする現行モデルの限界を克服し,同変フィルタを用いた高度なニューラルネットワークアーキテクチャを採用する。
UniMoは単一のモダリティでのワンタイムトレーニングを可能にし、複数の未確認画像モダリティをまたいだ推論の安定性と適応性を維持している。
画像の外観変化に拘わらず、動き補正の精度を忠実に向上する、形状と画像の両方からマルチモーダル知識を統合する共同学習フレームワークを開発した。
UniMoは、オブジェクトの変形や幾何学的歪みによって生じる局所的な変形に対処することで、グローバルな動き補正の堅牢性を高める幾何学的変形増強器を備え、トレーニングプロセスを改善するために拡張データを生成する。
実験の結果,UniMoが既存の動き補正法を精度で超越していることが判明した。
運動補正のための包括的なソリューションを提供することで、UniMoは特に胎児画像のような広範囲の運動を伴う挑戦的なアプリケーションにおいて、医療画像の大幅な進歩を示す。
この作業のコードは、https://github.com/IntelligentImaging/UNIMO/.comで公開されている。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Motion-Oriented Compositional Neural Radiance Fields for Monocular Dynamic Human Modeling [10.914612535745789]
本稿では,MoCo-NeRF(MoCo-NeRF)について述べる。
MoCo-NeRFはモノクロビデオのフリービューポイントレンダリングを実現するために設計されたフレームワークである。
論文 参考訳(メタデータ) (2024-07-16T17:59:01Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - MICDIR: Multi-scale Inverse-consistent Deformable Image Registration
using UNetMSS with Self-Constructing Graph Latent [0.0]
本稿ではVoxelmorphアプローチを3つの異なる方法で拡張する。
変形の小さい場合や大きな場合の性能向上のために,マルチスケールのUNetを用いて,解像度の異なるモデルの監視を行った。
脳MRIの登録作業において、提案手法はANTやVoxelMorphよりも大幅に改善された。
論文 参考訳(メタデータ) (2022-03-08T18:07:47Z) - Stochastic Planner-Actor-Critic for Unsupervised Deformable Image
Registration [33.72954116727303]
本稿では,大きく変形する医療画像の段階的登録を行う,新しい強化学習ベースのフレームワークを提案する。
本手法は2次元および3次元の医用画像データセットを用いて評価し,その一部は大きな変形を含む。
論文 参考訳(メタデータ) (2021-12-14T14:08:56Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
我々は、画像画素ではなく特徴統計を直接摂動することで、頑健なモデルを生成することで、敵の訓練に適応する。
提案手法であるAdvBN(Adversarial Batch Normalization)は,トレーニング中に最悪の機能摂動を発生させる単一ネットワーク層である。
論文 参考訳(メタデータ) (2020-09-18T17:52:34Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
我々は、前方通過を非滑らかな凸最適化問題として解釈できるニューラルネットワーク層の設計とトレーニングのための一般的なフレームワークを紹介する。
グラフのノードに代表されるローカルエージェントによって解決され、正規化関数を介して相互作用する凸ゲームに焦点を当てる。
このアプローチは、訓練可能なエンドツーエンドのディープモデル内で、古典的な画像の事前使用を可能にするため、画像の問題を解決するために魅力的である。
論文 参考訳(メタデータ) (2020-06-26T08:34:54Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。