Scoring rule nets: beyond mean target prediction in multivariate regression
- URL: http://arxiv.org/abs/2409.14456v1
- Date: Sun, 22 Sep 2024 14:09:12 GMT
- Title: Scoring rule nets: beyond mean target prediction in multivariate regression
- Authors: Daan Roordink, Sibylle Hess,
- Abstract summary: Conditional CRPS is a strictly proper scoring rule that extends CRPS.
We show in experiments on both synthetic and real data, that Conditional CRPS often outperforms MLE.
- Score: 1.795561427808824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic regression models trained with maximum likelihood estimation (MLE), can sometimes overestimate variance to an unacceptable degree. This is mostly problematic in the multivariate domain. While univariate models often optimize the popular Continuous Ranked Probability Score (CRPS), in the multivariate domain, no such alternative to MLE has yet been widely accepted. The Energy Score - the most investigated alternative - notoriously lacks closed-form expressions and sensitivity to the correlation between target variables. In this paper, we propose Conditional CRPS: a multivariate strictly proper scoring rule that extends CRPS. We show that closed-form expressions exist for popular distributions and illustrate their sensitivity to correlation. We then show in a variety of experiments on both synthetic and real data, that Conditional CRPS often outperforms MLE, and produces results comparable to state-of-the-art non-parametric models, such as Distributional Random Forest (DRF).
Related papers
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Learning generative models for valid knockoffs using novel
multivariate-rank based statistics [12.528602250193206]
Rank energy (RE) is derived using theoretical results characterizing the optimal maps in the Monge's Optimal Transport (OT) problem.
We propose a variant of the RE, dubbed as soft rank energy (sRE), and its kernel variant called as soft rank maximum mean discrepancy (sRMMD)
We then use sRMMD to generate deep knockoffs and show via extensive evaluation that it is a novel and effective method to produce valid knockoffs.
arXiv Detail & Related papers (2021-10-29T18:51:19Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Estimating Linear Mixed Effects Models with Truncated Normally
Distributed Random Effects [5.4052819252055055]
Inference can be conducted using maximum likelihood approach if assuming Normal distributions on the random effects.
In this paper we extend the classical (unconstrained) LME models to allow for sign constraints on its overall coefficients.
arXiv Detail & Related papers (2020-11-09T16:17:35Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors [8.11978827493967]
We propose an approach using parallel runs of MCMC, variational, or mode-based inference to hit as many modes as possible.
We present theoretical consistency with an example where the stacked inference process approximates the true data.
We demonstrate practical implementation in several model families.
arXiv Detail & Related papers (2020-06-22T15:26:59Z) - Distributional Random Forests: Heterogeneity Adjustment and Multivariate
Distributional Regression [0.8574682463936005]
We propose a novel forest construction for multivariate responses based on their joint conditional distribution.
The code is available as Python and R packages drf.
arXiv Detail & Related papers (2020-05-29T09:05:00Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.