Can Large Language Models Logically Predict Myocardial Infarction? Evaluation based on UK Biobank Cohort
- URL: http://arxiv.org/abs/2409.14478v1
- Date: Sun, 22 Sep 2024 14:57:31 GMT
- Title: Can Large Language Models Logically Predict Myocardial Infarction? Evaluation based on UK Biobank Cohort
- Authors: Yuxing Zhi, Yuan Guo, Kai Yuan, Hesong Wang, Heng Xu, Haina Yao, Albert C Yang, Guangrui Huang, Yuping Duan,
- Abstract summary: Large language models (LLMs) have seen extraordinary advances with applications in clinical decision support.
This study aims to evaluate quantitatively whether universal state-of-the-art LLMs can predict the incidence risk of myocardial infarction (MI) with logical inference.
- Score: 10.66506859118868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Large language models (LLMs) have seen extraordinary advances with applications in clinical decision support. However, high-quality evidence is urgently needed on the potential and limitation of LLMs in providing accurate clinical decisions based on real-world medical data. Objective: To evaluate quantitatively whether universal state-of-the-art LLMs (ChatGPT and GPT-4) can predict the incidence risk of myocardial infarction (MI) with logical inference, and to further make comparison between various models to assess the performance of LLMs comprehensively. Methods: In this retrospective cohort study, 482,310 participants recruited from 2006 to 2010 were initially included in UK Biobank database and later on resampled into a final cohort of 690 participants. For each participant, tabular data of the risk factors of MI were transformed into standardized textual descriptions for ChatGPT recognition. Responses were generated by asking ChatGPT to select a score ranging from 0 to 10 representing the risk. Chain of Thought (CoT) questioning was used to evaluate whether LLMs make prediction logically. The predictive performance of ChatGPT was compared with published medical indices, traditional machine learning models and other large language models. Conclusions: Current LLMs are not ready to be applied in clinical medicine fields. Future medical LLMs are suggested to be expert in medical domain knowledge to understand both natural languages and quantified medical data, and further make logical inferences.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As [1.0034156461900003]
Large language models (LLMs) show promising results in many aspects of language-based clinical practice.
We used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA"
We benchmarked this dataset using more than 24,500 questions on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus.
We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs.
arXiv Detail & Related papers (2024-06-06T08:41:46Z) - Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data [3.471944921180245]
We developed a fictional medical benchmark focused on a non-existent gland, the Glianorex.
This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities.
We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting.
arXiv Detail & Related papers (2024-06-04T15:08:56Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency.
arXiv Detail & Related papers (2023-08-09T07:51:40Z) - Large Language Models Leverage External Knowledge to Extend Clinical
Insight Beyond Language Boundaries [48.48630043740588]
Large Language Models (LLMs) such as ChatGPT and Med-PaLM have excelled in various medical question-answering tasks.
We develop a novel in-context learning framework to enhance their performance.
arXiv Detail & Related papers (2023-05-17T12:31:26Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
arXiv Detail & Related papers (2022-12-26T14:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.