RACOON: An LLM-based Framework for Retrieval-Augmented Column Type Annotation with a Knowledge Graph
- URL: http://arxiv.org/abs/2409.14556v2
- Date: Fri, 1 Nov 2024 01:15:51 GMT
- Title: RACOON: An LLM-based Framework for Retrieval-Augmented Column Type Annotation with a Knowledge Graph
- Authors: Lindsey Linxi Wei, Guorui Xiao, Magdalena Balazinska,
- Abstract summary: We show how to use a Knowledge Graph to augment the context information provided to Large Language Models (LLMs)
Our approach, called RACOON, combines both pre-trained parametric and non-parametric knowledge during generation to improve LLMs' performance on Column Type.
Our experiments show that RACOON achieves up to a 0.21 micro F-1 improvement compared against vanilla LLM inference.
- Score: 5.080968323993759
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As an important component of data exploration and integration, Column Type Annotation (CTA) aims to label columns of a table with one or more semantic types. With the recent development of Large Language Models (LLMs), researchers have started to explore the possibility of using LLMs for CTA, leveraging their strong zero-shot capabilities. In this paper, we build on this promising work and improve on LLM-based methods for CTA by showing how to use a Knowledge Graph (KG) to augment the context information provided to the LLM. Our approach, called RACOON, combines both pre-trained parametric and non-parametric knowledge during generation to improve LLMs' performance on CTA. Our experiments show that RACOON achieves up to a 0.21 micro F-1 improvement compared against vanilla LLM inference.
Related papers
- A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
We develop a comprehensive and testbed for node classification using Large Language Models (LLMs)
It includes ten datasets, eight LLM-based algorithms, and three learning paradigms, and is designed for easy extension with new methods and datasets.
We conduct extensive experiments, training and evaluating over 2,200 models, to determine the key settings that affect performance.
Our findings uncover eight insights, e.g., LLM-based methods can significantly outperform traditional methods in a semi-supervised setting, while the advantage is marginal in a supervised setting.
arXiv Detail & Related papers (2025-02-02T15:56:05Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains.
This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (1B parameters) LLMs.
arXiv Detail & Related papers (2024-06-28T17:16:03Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs [4.487720716313697]
Large language models (LLMs) have revolutionized the field of natural language processing (NLP)
This work explores how to leverage the information retrieval and text generation capabilities of LLMs to refine/enhance the topological structure of text-attributed graphs (TAGs) under the node classification setting.
arXiv Detail & Related papers (2023-11-24T07:53:48Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.