論文の概要: From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
- arxiv url: http://arxiv.org/abs/2409.14623v1
- Date: Sun, 22 Sep 2024 23:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:45:58.980652
- Title: From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
- Title(参考訳): LazyからRichへ:Deep Linear Networksにおける実践的な学習ダイナミクス
- Authors: Clémentine C. J. Dominé, Nicolas Anguita, Alexandra M. Proca, Lukas Braun, Daniel Kunin, Pedro A. M. Mediano, Andrew M. Saxe,
- Abstract要約: 人工ネットワークでは、これらのモデルの有効性はタスク固有の表現を構築する能力に依存している。
以前の研究では、異なる初期化によって、表現が静的な遅延状態にあるネットワークや、表現が動的に進化するリッチ/フィーチャーな学習体制のいずれかにネットワークを配置できることが強調されていた。
これらの解は、豊かな状態から遅延状態までのスペクトルにわたる表現とニューラルカーネルの進化を捉えている。
- 参考スコア(独自算出の注目度): 47.13391046553908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biological and artificial neural networks develop internal representations that enable them to perform complex tasks. In artificial networks, the effectiveness of these models relies on their ability to build task specific representation, a process influenced by interactions among datasets, architectures, initialization strategies, and optimization algorithms. Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically. Here, we examine how initialization influences learning dynamics in deep linear neural networks, deriving exact solutions for lambda-balanced initializations-defined by the relative scale of weights across layers. These solutions capture the evolution of representations and the Neural Tangent Kernel across the spectrum from the rich to the lazy regimes. Our findings deepen the theoretical understanding of the impact of weight initialization on learning regimes, with implications for continual learning, reversal learning, and transfer learning, relevant to both neuroscience and practical applications.
- Abstract(参考訳): 生物学的および人工ニューラルネットワークは、複雑なタスクを実行できる内部表現を開発する。
人工ネットワークでは、これらのモデルの有効性は、データセット、アーキテクチャ、初期化戦略、最適化アルゴリズム間の相互作用に影響されるタスク固有表現を構築する能力に依存している。
以前の研究では、異なる初期化によって、表現が静的な遅延状態にあるネットワークや、表現が動的に進化するリッチ/フィーチャーな学習体制のいずれかにネットワークを配置できることが強調されていた。
本稿では,階層間の重みの相対スケールによって定義されるラムダ均衡初期化の正確な解を導出し,初期化が深層線形ニューラルネットワークの学習力学にどのように影響するかを検討する。
これらの解は、豊かな状態から遅延状態までのスペクトルを横断する表現とニューラル・タンジェント・カーネルの進化を捉えている。
本研究は, 重み初期化が学習体制に与える影響に関する理論的理解を深め, 継続学習, 逆学習, 転帰学習に影響を及ぼす。
関連論文リスト
- Artificial Neural Network and Deep Learning: Fundamentals and Theory [0.0]
この本は、データと確率分布を理解するための確固たる基礎を定めている。
この本は多層フィードフォワードニューラルネットワークに発展し、アーキテクチャ、トレーニングプロセス、バックプロパゲーションアルゴリズムを説明する。
テキストは様々な学習率スケジュールと適応アルゴリズムをカバーし、トレーニングプロセスを最適化するための戦略を提供する。
論文 参考訳(メタデータ) (2024-08-12T21:06:59Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
浅いニューラルネットワークのネットワーク軌跡をこのレンズを通して解析することにより,このプロセスの動的特性について検討する。
我々は,学習率の仕組みによって,規則的かつカオス的な行動のヒントを見いだす。
この研究は、力学系理論、ネットワーク理論、機械学習のアイデアの交叉受精にも貢献している。
論文 参考訳(メタデータ) (2024-04-08T17:33:11Z) - How connectivity structure shapes rich and lazy learning in neural
circuits [14.236853424595333]
本稿では,初期重みの構造,特にその有効ランクがネットワーク学習体制に与える影響について検討する。
本研究は,学習体制形成における初期重み構造の役割を明らかにするものである。
論文 参考訳(メタデータ) (2023-10-12T17:08:45Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。