論文の概要: Deep learning of contagion dynamics on complex networks
- arxiv url: http://arxiv.org/abs/2006.05410v5
- Date: Wed, 23 Jun 2021 21:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 15:39:55.466824
- Title: Deep learning of contagion dynamics on complex networks
- Title(参考訳): 複雑ネットワーク上の感染ダイナミクスの深層学習
- Authors: Charles Murphy, Edward Laurence, Antoine Allard
- Abstract要約: 本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting the evolution of contagion dynamics is still an open problem to
which mechanistic models only offer a partial answer. To remain mathematically
or computationally tractable, these models must rely on simplifying
assumptions, thereby limiting the quantitative accuracy of their predictions
and the complexity of the dynamics they can model. Here, we propose a
complementary approach based on deep learning where the effective local
mechanisms governing a dynamic on a network are learned from time series data.
Our graph neural network architecture makes very few assumptions about the
dynamics, and we demonstrate its accuracy using different contagion dynamics of
increasing complexity. By allowing simulations on arbitrary network structures,
our approach makes it possible to explore the properties of the learned
dynamics beyond the training data. Finally, we illustrate the applicability of
our approach using real data of the COVID-19 outbreak in Spain. Our results
demonstrate how deep learning offers a new and complementary perspective to
build effective models of contagion dynamics on networks.
- Abstract(参考訳): 感染力学の進化を予測することは、力学モデルが部分解のみを与えるようなオープンな問題である。
数学的または計算的に計算可能となるためには、これらのモデルは仮定を単純化し、予測の量的精度とモデル化できる力学の複雑さを制限する必要がある。
本稿では,ネットワーク上で動的に制御する効果的な局所機構を時系列データから学習する深層学習に基づく補完的アプローチを提案する。
当社のグラフニューラルネットワークアーキテクチャは,そのダイナミクスに関する仮定をほとんど行わず,複雑化に伴う異なる伝染ダイナミクスを用いてその正確さを実証する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
最後に,スペインにおけるcovid-19流行の実データを用いて,このアプローチの適用性を示す。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
人工ネットワークでは、これらのモデルの有効性はタスク固有の表現を構築する能力に依存している。
以前の研究では、異なる初期化によって、表現が静的な遅延状態にあるネットワークや、表現が動的に進化するリッチ/フィーチャーな学習体制のいずれかにネットワークを配置できることが強調されていた。
これらの解は、豊かな状態から遅延状態までのスペクトルにわたる表現とニューラルカーネルの進化を捉えている。
論文 参考訳(メタデータ) (2024-09-22T23:19:04Z) - Self Expanding Convolutional Neural Networks [1.4330085996657045]
本稿では,学習中の畳み込みニューラルネットワーク(CNN)を動的に拡張する新しい手法を提案する。
我々は、単一のモデルを動的に拡張する戦略を採用し、様々な複雑さのレベルでチェックポイントの抽出を容易にする。
論文 参考訳(メタデータ) (2024-01-11T06:22:40Z) - Learning Continuous Network Emerging Dynamics from Scarce Observations
via Data-Adaptive Stochastic Processes [11.494631894700253]
我々は、データ適応型ネットワークダイナミクスによって制御される新しいプロセスのクラスであるODE Processs for Network Dynamics (NDP4ND)を紹介する。
提案手法はデータと計算効率に優れており,未確認のネットワークに適応できることを示す。
論文 参考訳(メタデータ) (2023-10-25T08:44:05Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
連続時間動的ネットワーク表現のためのPiecewise-Veable Model (PiVeM)。
超低次元空間において、PiVeMはネットワーク構造と力学をうまく表現できることを示す。
リンク予測などの下流タスクでは、関連する最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2022-12-23T13:57:56Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。