Error-Mitigated Multi-Layer Quantum Routing
- URL: http://arxiv.org/abs/2409.14632v1
- Date: Sun, 22 Sep 2024 23:54:25 GMT
- Title: Error-Mitigated Multi-Layer Quantum Routing
- Authors: Wenbo Shi, Neel Kanth Kundu, Robert Malaney,
- Abstract summary: We propose a new quantum error mitigation method named extrapolated CDR (eCDR)
Our work highlights how new mitigation methods built from different components of pre-existing methods, and designed with a core application in mind, can lead to significant performance enhancements.
- Score: 3.054784196020358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the numerous limitations of current quantum devices, quantum error mitigation methods become potential solutions for realizing practical quantum applications in the near term. Zero-Noise Extrapolation (ZNE) and Clifford Data Regression (CDR) are two promising quantum error mitigation methods. Based on the characteristics of these two methods, we propose a new method named extrapolated CDR (eCDR). To benchmark our method, we embed eCDR into a quantum application, specifically multi-layer quantum routing. Quantum routers direct a quantum signal from one input path to a quantum superposition of multiple output paths and are considered important elements of future quantum networks. Multi-layer quantum routers extend the scalability of quantum networks by allowing for further superposition of paths. We benchmark the performance of multi-layer quantum routers implemented on current superconducting quantum devices instantiated with the ZNE, CDR, and eCDR methods. Our experimental results show that the new eCDR method significantly outperforms ZNE and CDR for the 2-layer quantum router. Our work highlights how new mitigation methods built from different components of pre-existing methods, and designed with a core application in mind, can lead to significant performance enhancements.
Related papers
- Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Reductive Quantum Phase Estimation [0.0]
We show a circuit that distinguishes an arbitrary set of phases with a fewer number of qubits and unitary applications.
We show a trade-off between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application.
arXiv Detail & Related papers (2024-02-06T23:38:36Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Error-Mitigated Quantum Routing on Noisy Devices [0.0]
We experimentally deploy two promising quantum error mitigation methods, Zero-Noise Extrapolation (ZNE) and Probabilistic Error Cancellation (PEC)
We also investigate the routing performance provided by the concatenation of these two error-mitigation methods.
arXiv Detail & Related papers (2023-05-23T01:08:01Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Assisted quantum simulation of open quantum systems [0.0]
We introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology.
We present two quantum-assisted quantum algorithms for simulating open quantum systems.
arXiv Detail & Related papers (2023-02-26T11:41:02Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.