論文の概要: Neural refractive index field: Unlocking the Potential of Background-oriented Schlieren Tomography in Volumetric Flow Visualization
- arxiv url: http://arxiv.org/abs/2409.14722v1
- Date: Mon, 23 Sep 2024 05:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:23:54.402772
- Title: Neural refractive index field: Unlocking the Potential of Background-oriented Schlieren Tomography in Volumetric Flow Visualization
- Title(参考訳): ニューラル屈折率場:容積流れの可視化における背景向きシュリーレントモグラフィの可能性の解錠
- Authors: Yuanzhe He, Yutao Zheng, Shijie Xu, Chang Liu, Di Peng, Yingzheng Liu, Weiwei Cai,
- Abstract要約: 本研究はニューラル屈折指数場(NeRIF)と呼ばれる革新的な再構成手法を提案する。
NeRIFはニューラルネットワークで流れの場を暗黙的に表現する。
乱流文泉火炎における数値シミュレーションと実験実験の両方により, 再現精度と空間分解能を大幅に向上させることができることが示唆された。
- 参考スコア(独自算出の注目度): 6.748519362625069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background-oriented Schlieren tomography (BOST) is a prevalent method for visualizing intricate turbulent flows, valued for its ease of implementation and capacity to capture three-dimensional distributions of a multitude of flow parameters. However, the voxel-based meshing scheme leads to significant challenges, such as inadequate spatial resolution, substantial discretization errors, poor noise immunity, and excessive computational costs. This work presents an innovative reconstruction approach termed neural refractive index field (NeRIF) which implicitly represents the flow field with a neural network, which is trained with tailored strategies. Both numerical simulations and experimental demonstrations on turbulent Bunsen flames suggest that our approach can significantly improve the reconstruction accuracy and spatial resolution while concurrently reducing computational expenses. Although showcased in the context of background-oriented schlieren tomography here, the key idea embedded in the NeRIF can be readily adapted to various other tomographic modalities including tomographic absorption spectroscopy and tomographic particle imaging velocimetry, broadening its potential impact across different domains of flow visualization and analysis.
- Abstract(参考訳): 背景指向シュリーレントモグラフィー(BOST)は複雑な乱流を可視化するための一般的な手法であり、その実装容易性とキャパシティにより、複数の流れパラメータの3次元分布を捉えることができる。
しかしながら、ボクセルベースのメッシュ方式は、空間分解能の不十分、相当な離散化誤差、低ノイズ免疫、過度な計算コストなど、重大な問題を引き起こす。
本研究は,ニューラルネットワークを用いた流れ場を暗黙的に表現するニューラル屈折指数場(NeRIF)と呼ばれる,革新的な再構成手法を提案する。
乱流文泉火炎における数値シミュレーションと実験実験は, 計算コストを同時に削減しつつ, 再現精度と空間分解能を大幅に向上させることができることを示唆している。
ここでは背景向きのシュリエレン断層撮影の文脈で紹介されているが、NeRIFに埋め込まれた鍵となるアイデアは、トモグラフィ吸収分光法やトモグラフィー粒子画像法といった様々なトモグラフィーに容易に適用でき、フローの可視化と解析の異なる領域にわたってその潜在的影響を広げることができる。
関連論文リスト
- Rethink Predicting the Optical Flow with the Kinetics Perspective [1.7901503554839604]
光フロー推定は、低レベルコンピュータビジョンにおける基本的なタスクの1つである。
見かけ上は、連続したフレーム内の画素間の相関として光学フローを見ることができる。
本稿では,このモチベーションから明らかな情報と運動学情報を組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2024-05-21T05:47:42Z) - Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
本稿では,未決定の線形逆問題に対する空間変動正規化モデルの開発に焦点をあてる。
提案モデルの主な目的は,ディノベーションと細部・縁の保存のバランスを良くすることである。
畳み込みニューラルネットワークは、トレーニングにおいて弾性損失関数を用いて、基底真理像とその勾配を近似するように設計されている。
論文 参考訳(メタデータ) (2024-04-25T08:58:41Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
本稿では,RecFNOという優れた性能とメッシュ転送性を備えたエンド・ツー・エンドの物理場再構成手法を提案する。
提案手法は, スパース観測から無限次元空間における流れと熱場への写像を学習することを目的としている。
流体力学および熱力学に関する実験により,提案手法は既存のPOD法およびCNN法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-20T07:20:22Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - An artificial neural network approach to bifurcating phenomena in
computational fluid dynamics [0.0]
非線形パラメタライズドPDEの非滑らか解集合を扱うPOD-NN手法について論じる。
臨界点進化の非侵襲的回復のための縮小多様体ベースの分岐図を提案する。
論文 参考訳(メタデータ) (2021-09-22T14:42:36Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Image Response Regression via Deep Neural Networks [4.646077947295938]
本稿では,空間変動係数モデルの枠組みにおける新しい非パラメトリック手法を提案する。
提案手法の主な考え方は,画像ボクセルを空間的有効サンプルとして扱うことであり,医用画像研究の大部分を悩ませる限られたサンプルサイズの問題を軽減することにある。
本手法の有効性を,集中シミュレーションを用いて実証し,その利点を2つの機能的磁気共鳴イメージングデータセットで分析した。
論文 参考訳(メタデータ) (2020-06-17T14:45:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。