Isometric Immersion Learning with Riemannian Geometry
- URL: http://arxiv.org/abs/2409.14760v1
- Date: Mon, 23 Sep 2024 07:17:06 GMT
- Title: Isometric Immersion Learning with Riemannian Geometry
- Authors: Zihao Chen, Wenyong Wang, Yu Xiang,
- Abstract summary: There is still no manifold learning method that provides a theoretical guarantee of isometry.
Inspired by Nash's isometric theorem, we introduce a new concept called isometric immersion learning.
An unsupervised neural network-based model that simultaneously achieves metric and manifold learning is proposed.
- Score: 4.987314374901577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manifold learning has been proven to be an effective method for capturing the implicitly intrinsic structure of non-Euclidean data, in which one of the primary challenges is how to maintain the distortion-free (isometry) of the data representations. Actually, there is still no manifold learning method that provides a theoretical guarantee of isometry. Inspired by Nash's isometric theorem, we introduce a new concept called isometric immersion learning based on Riemannian geometry principles. Following this concept, an unsupervised neural network-based model that simultaneously achieves metric and manifold learning is proposed by integrating Riemannian geometry priors. What's more, we theoretically derive and algorithmically implement a maximum likelihood estimation-based training method for the new model. In the simulation experiments, we compared the new model with the state-of-the-art baselines on various 3-D geometry datasets, demonstrating that the new model exhibited significantly superior performance in multiple evaluation metrics. Moreover, we applied the Riemannian metric learned from the new model to downstream prediction tasks in real-world scenarios, and the accuracy was improved by an average of 8.8%.
Related papers
- Score-based pullback Riemannian geometry [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.
We produce high-quality geodesics through the data support and reliably estimates the intrinsic dimension of the data manifold.
Our framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
We study the case of non-differentiable activation functions, such as ReLU.
Two recent works introduced a geometric framework to study neural networks.
We illustrate our findings with some numerical experiments on classification of images and thermodynamic problems.
arXiv Detail & Related papers (2024-04-09T08:11:46Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
arXiv Detail & Related papers (2023-08-04T05:09:06Z) - Learning new physics efficiently with nonparametric methods [11.970219534238444]
We present a machine learning approach for model-independent new physics searches.
The corresponding algorithm is powered by recent large-scale implementations of kernel methods.
We show that our approach has dramatic advantages compared to neural network implementations in terms of training times and computational resources.
arXiv Detail & Related papers (2022-04-05T16:17:59Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - A prior-based approximate latent Riemannian metric [3.716965622352967]
We propose a surrogate conformal generative metric in the latent space of a generative model that is simple, efficient and robust.
We theoretically analyze the behavior of the proposed metric and show that it is sensible to use in practice.
Also, we show the applicability of the proposed methodology for data analysis in the life sciences.
arXiv Detail & Related papers (2021-03-09T08:31:52Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.