IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
- URL: http://arxiv.org/abs/2505.06288v1
- Date: Wed, 07 May 2025 12:08:33 GMT
- Title: IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
- Authors: Zihao Chen, Wenyong Wang, Jiachen Yang, Yu Xiang,
- Abstract summary: Previous research generally mapped non-Euclidean data into Euclidean space during representation learning.<n>In this paper, we propose a novel Isometric Immersion Kernel Learning (IIKL) method.<n>We show that our method could reduce the inner product invariant loss by more than 90% compared to state-of-the-art methods.
- Score: 15.82760919569542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric representation learning in preserving the intrinsic geometric and topological properties for discrete non-Euclidean data is crucial in scientific applications. Previous research generally mapped non-Euclidean discrete data into Euclidean space during representation learning, which may lead to the loss of some critical geometric information. In this paper, we propose a novel Isometric Immersion Kernel Learning (IIKL) method to build Riemannian manifold and isometrically induce Riemannian metric from discrete non-Euclidean data. We prove that Isometric immersion is equivalent to the kernel function in the tangent bundle on the manifold, which explicitly guarantees the invariance of the inner product between vectors in the arbitrary tangent space throughout the learning process, thus maintaining the geometric structure of the original data. Moreover, a novel parameterized learning model based on IIKL is introduced, and an alternating training method for this model is derived using Maximum Likelihood Estimation (MLE), ensuring efficient convergence. Experimental results proved that using the learned Riemannian manifold and its metric, our model preserved the intrinsic geometric representation of data in both 3D and high-dimensional datasets successfully, and significantly improved the accuracy of downstream tasks, such as data reconstruction and classification. It is showed that our method could reduce the inner product invariant loss by more than 90% compared to state-of-the-art (SOTA) methods, also achieved an average 40% improvement in downstream reconstruction accuracy and a 90% reduction in error for geometric metrics involving isometric and conformal.
Related papers
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation [79.27003481818413]
We introduce FlatVI, a training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry.<n>By encouraging straight lines in the latent space to approximate geodesics on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches.
arXiv Detail & Related papers (2025-07-15T23:08:14Z) - Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding [41.601022263772535]
Dimensionality reduction aims to simplify complex data by reducing its feature dimensionality while preserving essential patterns, with core applications in data analysis and visualisation.<n>To preserve the underlying data structure, multi-dimensional scaling (MDS) methods focus on preserving pairwise dissimilarities, such as distances.
arXiv Detail & Related papers (2025-03-23T10:03:22Z) - Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data [12.424539896723603]
Latent variable models are powerful tools for learning low-dimensional manifold from high-dimensional data.<n>This paper generalizes previous work and allows us to handle complex tasks in various domains, including robot motion synthesis and analysis of brain connectomes.
arXiv Detail & Related papers (2025-03-07T16:08:53Z) - Score-based pullback Riemannian geometry [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.
We produce high-quality geodesics through the data support and reliably estimates the intrinsic dimension of the data manifold.
Our framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - Isometric Immersion Learning with Riemannian Geometry [4.987314374901577]
There is still no manifold learning method that provides a theoretical guarantee of isometry.
Inspired by Nash's isometric theorem, we introduce a new concept called isometric immersion learning.
An unsupervised neural network-based model that simultaneously achieves metric and manifold learning is proposed.
arXiv Detail & Related papers (2024-09-23T07:17:06Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
We study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data.
Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data.
Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.
arXiv Detail & Related papers (2023-04-08T06:35:25Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z) - Probabilistic Learning Vector Quantization on Manifold of Symmetric
Positive Definite Matrices [3.727361969017079]
We develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization.
In this paper, we generalize the probabilistic learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices.
Empirical investigations on synthetic data, image data, and motor imagery EEG data demonstrate the superior performance of the proposed method.
arXiv Detail & Related papers (2021-02-01T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.