A-VL: Adaptive Attention for Large Vision-Language Models
- URL: http://arxiv.org/abs/2409.14846v1
- Date: Mon, 23 Sep 2024 09:22:59 GMT
- Title: A-VL: Adaptive Attention for Large Vision-Language Models
- Authors: Junyang Zhang, Mu Yuan, Ruiguang Zhong, Puhan Luo, Huiyou Zhan, Ningkang Zhang, Chengchen Hu, Xiangyang Li,
- Abstract summary: Large Vision-Language Model (LVLM) integrates computer vision and natural language processing techniques, offering substantial application potential.
Current adaptive attention methods significantly reduce the memory requirements of Transformer-based language models.
We observe that LVLMs generate responses from both remote image tokens and local text tokens, and different modalities have different attention patterns.
We develop A-VL, a plug-and-play adaptive attention tailored for LVLM inference.
- Score: 10.027871150748956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Large Vision-Language Model (LVLM) integrates computer vision and natural language processing techniques, offering substantial application potential. However, these models demand extensive resources during inference. Adaptive attention techniques can dynamically reduce computational redundancy and thus improve efficiency. Although current adaptive attention methods significantly reduce the memory requirements of Transformer-based language models, they are not tailored for LVLMs. We observe that LVLMs generate responses from both remote image tokens and local text tokens, and different modalities have different attention patterns. This observation inspires us to manage the attention for each modality separately. Specifically, for visual input, we store the cache of potentially useful information but only compute the most critical parts. For language input, we care more about local information. Based on our observation and analysis of vision-language attention patterns, we develop A-VL, a plug-and-play adaptive attention tailored for LVLM inference. Extensive evaluations on three vision-language tasks and five datasets show the effectiveness of our designs. Our approach A-VL outperforms existing adaptive attention methods in reducing memory usage and computational load without compromising performance.
Related papers
- ICT: Image-Object Cross-Level Trusted Intervention for Mitigating Object Hallucination in Large Vision-Language Models [32.24716280370563]
ICT is a lightweight, training-free method that calculates an intervention direction to shift the model's focus towards different levels of visual information.
It achieves strong performance with a small amount of data and generalizes well across different datasets and models.
arXiv Detail & Related papers (2024-11-22T12:22:21Z) - Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks.
LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension.
We propose LACING to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG)
arXiv Detail & Related papers (2024-11-21T16:33:30Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - Locality Alignment Improves Vision-Language Models [55.275235524659905]
Vision language models (VLMs) have seen growing adoption in recent years, but many still struggle with basic spatial reasoning errors.
We propose a new efficient post-training stage for ViTs called locality alignment.
We show that locality-aligned backbones improve performance across a range of benchmarks.
arXiv Detail & Related papers (2024-10-14T21:01:01Z) - Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning [59.13366859237086]
Current solutions for efficiently constructing large vision-language (VL) models follow a two-step paradigm.
We consider visual prompts as additional knowledge that facilitates language models in addressing tasks associated with visual information.
We introduce a novel approach, wherein visual prompts are memoryd with the weights of FFN for visual knowledge injection.
arXiv Detail & Related papers (2024-05-09T08:23:20Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs.
We introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency.
arXiv Detail & Related papers (2024-03-11T14:35:32Z) - DeepSeek-VL: Towards Real-World Vision-Language Understanding [24.57011093316788]
We present DeepSeek-VL, an open-source Vision-Language (VL) Model for real-world vision and language understanding applications.
Our approach is structured around three key dimensions: We strive to ensure our data is diverse, scalable, and extensively covers real-world scenarios.
We create a use case taxonomy from real user scenarios and construct an instruction tuning dataset.
arXiv Detail & Related papers (2024-03-08T18:46:00Z) - Teaching Structured Vision&Language Concepts to Vision&Language Models [46.344585368641006]
We introduce the collective notion of Structured Vision&Language Concepts (SVLC)
SVLC includes object attributes, relations, and states which are present in the text and visible in the image.
We propose a more elegant data-driven approach for enhancing VL models' understanding of SVLCs.
arXiv Detail & Related papers (2022-11-21T18:54:10Z) - PEVL: Position-enhanced Pre-training and Prompt Tuning for
Vision-language Models [127.17675443137064]
We introduce PEVL, which enhances the pre-training and prompt tuning of vision-language models with explicit object position modeling.
PEVL reformulates discretized object positions and language in a unified language modeling framework.
We show that PEVL enables state-of-the-art performance on position-sensitive tasks such as referring expression comprehension and phrase grounding.
arXiv Detail & Related papers (2022-05-23T10:17:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.