Testing Dependency of Weighted Random Graphs
- URL: http://arxiv.org/abs/2409.14870v2
- Date: Tue, 24 Sep 2024 16:07:57 GMT
- Title: Testing Dependency of Weighted Random Graphs
- Authors: Mor Oren, Vered Paslev, Wasim Huleihel,
- Abstract summary: We study the task of detecting the edge dependency between two random graphs.
For general edge-weight distributions, we establish thresholds at which optimal testing becomes information-theoretically possible or impossible.
- Score: 4.0554893636822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the task of detecting the edge dependency between two weighted random graphs. We formulate this task as a simple hypothesis testing problem, where under the null hypothesis, the two observed graphs are statistically independent, whereas under the alternative, the edges of one graph are dependent on the edges of a uniformly and randomly vertex-permuted version of the other graph. For general edge-weight distributions, we establish thresholds at which optimal testing becomes information-theoretically possible or impossible, as a function of the total number of nodes in the observed graphs and the generative distributions of the weights. Finally, we identify a statistical-computational gap, and present evidence suggesting that this gap is inherent using the framework of low-degree polynomials.
Related papers
- Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
We propose a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation.
We showcase it on graph benchmark datasets as well as on single cell RNA-sequencing data analysis.
arXiv Detail & Related papers (2023-06-05T00:01:17Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
We propose a joint graph learning method that takes into account the presence of hidden (latent) variables.
We exploit the structure resulting from the previous considerations to propose a convex optimization problem.
We compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
arXiv Detail & Related papers (2022-12-04T13:03:41Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
We consider graphs as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius.
In a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius.
We develop methods to estimate the unknown sampling density in a self-supervised fashion.
arXiv Detail & Related papers (2022-10-15T08:01:08Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We develop this idea in a concrete non-parametric method that we call Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We derive convergence rates for our collaborative approach that highlights the role played by variables such as the number of available observations per node, the size of the graph, and how accurately the graph structure encodes the similarity between tasks.
arXiv Detail & Related papers (2022-05-28T15:37:03Z) - Residual2Vec: Debiasing graph embedding with random graphs [1.9280643035418397]
We propose residual2vec, a general graph embedding method that can debias various structural biases in graphs by using random graphs.
We demonstrate that this debiasing not only improves link prediction and clustering performance but also allows us to explicitly model salient structural properties in graph embedding.
arXiv Detail & Related papers (2021-10-14T18:24:11Z) - Hypothesis Testing for Equality of Latent Positions in Random Graphs [0.2741266294612775]
We consider the hypothesis testing problem that two vertices $i$ and $j$th have the same latent positions, possibly up to scaling.
We propose several test statistics based on the empirical Mahalanobis distances between the $i$th and $j$th rows of either the adjacency or the normalized Laplacian spectral embedding of the graph.
Using these test statistics, we address the model selection problem of choosing between the standard block model and its degree-corrected variant.
arXiv Detail & Related papers (2021-05-23T01:27:23Z) - A Thorough View of Exact Inference in Graphs from the Degree-4
Sum-of-Squares Hierarchy [37.34153902687548]
We tackle the problem of exactly recovering an unknown ground-truth binary labeling of the nodes from a single corrupted observation of each edge.
We apply a hierarchy of relaxations known as the sum-of-squares hierarchy, to the problem.
We show that the solution of the dual of the relaxed problem is related to finding edge weights of the Johnson and Kneser graphs.
arXiv Detail & Related papers (2021-02-16T08:36:19Z) - Testing correlation of unlabeled random graphs [18.08210501570919]
We study the problem of detecting the edge correlation between two random graphs with $n$ unlabeled nodes.
This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated.
Under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null.
arXiv Detail & Related papers (2020-08-23T19:19:45Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.