論文の概要: Deep Reinforcement Learning-based Obstacle Avoidance for Robot Movement in Warehouse Environments
- arxiv url: http://arxiv.org/abs/2409.14972v1
- Date: Mon, 23 Sep 2024 12:42:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 15:15:39.758319
- Title: Deep Reinforcement Learning-based Obstacle Avoidance for Robot Movement in Warehouse Environments
- Title(参考訳): 深層強化学習に基づく倉庫環境におけるロボット運動の障害物回避
- Authors: Keqin Li, Jiajing Chen, Denzhi Yu, Tao Dajun, Xinyu Qiu, Lian Jieting, Sun Baiwei, Zhang Shengyuan, Zhenyu Wan, Ran Ji, Bo Hong, Fanghao Ni,
- Abstract要約: 本稿では,移動ロボット障害物回避アルゴリズムである倉庫環境に基づく深層強化学習を提案する。
深部強化学習アルゴリズムにおける値関数ネットワークの学習能力不足に対して、歩行者間の相互作用情報を歩行者角度グリッドを介して抽出する。
歩行者の空間行動に基づいて、強化学習の報酬関数を設計し、その角度が過度に変化する状態に対して、ロボットを罰する。
- 参考スコア(独自算出の注目度): 6.061908707850057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At present, in most warehouse environments, the accumulation of goods is complex, and the management personnel in the control of goods at the same time with the warehouse mobile robot trajectory interaction, the traditional mobile robot can not be very good on the goods and pedestrians to feed back the correct obstacle avoidance strategy, in order to control the mobile robot in the warehouse environment efficiently and friendly to complete the obstacle avoidance task, this paper proposes a deep reinforcement learning based on the warehouse environment, the mobile robot obstacle avoidance Algorithm. Firstly, for the insufficient learning ability of the value function network in the deep reinforcement learning algorithm, the value function network is improved based on the pedestrian interaction, the interaction information between pedestrians is extracted through the pedestrian angle grid, and the temporal features of individual pedestrians are extracted through the attention mechanism, so that we can learn to obtain the relative importance of the current state and the historical trajectory state as well as the joint impact on the robot's obstacle avoidance strategy, which provides an opportunity for the learning of multi-layer perceptual machines afterwards. Secondly, the reward function of reinforcement learning is designed based on the spatial behaviour of pedestrians, and the robot is punished for the state where the angle changes too much, so as to achieve the requirement of comfortable obstacle avoidance; Finally, the feasibility and effectiveness of the deep reinforcement learning-based mobile robot obstacle avoidance algorithm in the warehouse environment in the complex environment of the warehouse are verified through simulation experiments.
- Abstract(参考訳): 現在、ほとんどの倉庫環境において、商品の蓄積は複雑であり、倉庫における移動ロボットの軌道操作と同時に商品の制御を行う管理担当者は、従来の移動ロボットは、倉庫環境における移動ロボットを効率よく、友好的に制御し、障害物回避タスクを完了させるために、商品や歩行者に十分な障害回避戦略を与えることができない。
まず、深部強化学習アルゴリズムにおける価値関数ネットワークの学習能力の不足に対して、歩行者間相互作用に基づいて価値関数ネットワークを改良し、歩行者アングルグリッドを介して歩行者間のインタラクション情報を抽出し、注目機構を介して歩行者の時間的特徴を抽出することにより、ロボットの障害物回避戦略への共同的影響だけでなく、現在および過去の軌跡状態の相対的重要性を学習し、その後、多層知覚機械の学習機会を提供する。
次に、歩行者の空間行動に基づいて強化学習の報奨関数を設計し、快適な障害物回避の要求を満たすために、角度が過度に変化する状況に対してロボットを罰すると共に、倉庫の複雑な環境における倉庫環境における深部強化学習に基づく移動ロボット障害物回避アルゴリズムの有効性と有効性についてシミュレーション実験により検証する。
関連論文リスト
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
本稿では,ロボットのさまざまなエージェントや障害物との相互作用を高める新しい手法を提案する。
このアプローチでは、エンティティタイプに関する情報を使用し、衝突回避を改善し、より安全なナビゲーションを保証する。
本研究では,大人,自転車乗り,子供,静的障害物など,さまざまな物体との衝突に対してロボットをペナルティ化する新たな報酬関数を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:16:03Z) - Deep Reinforcement Learning with Enhanced PPO for Safe Mobile Robot Navigation [0.6554326244334868]
本研究では,複雑な環境下での自律走行のための移動ロボットの訓練における深層強化学習の適用について検討する。
このロボットは、LiDARセンサデータとディープニューラルネットワークを用いて、障害物を回避しつつ、特定の目標に向かって誘導する制御信号を生成する。
論文 参考訳(メタデータ) (2024-05-25T15:08:36Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
既存の安全手法は、ロボットが実行時に学習し適応する能力を無視することが多く、過度に保守的な行動を引き起こす。
本稿では,ロボットの進化する不確実性を明示的に考慮した安全制御ポリシを合成するための,新しいクローズドループパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-03T20:34:01Z) - DiAReL: Reinforcement Learning with Disturbance Awareness for Robust
Sim2Real Policy Transfer in Robot Control [0.0]
遅延マルコフ決定プロセスは、最近コミットされたアクションの有限時間ウィンドウでエージェントの状態空間を拡大することでマルコフ特性を満たす。
本稿では,遅延した環境下での乱れ増進型マルコフ決定プロセスを導入し,政治強化学習アルゴリズムのトレーニングにおける乱れ推定を取り入れた新しい表現法を提案する。
論文 参考訳(メタデータ) (2023-06-15T10:11:38Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
障害物回避は、移動ロボットの自律ナビゲーションのための根本的かつ困難な問題です。
本稿では,ロボットが単一眼カメラにのみ依存しなければならない単純な3D環境における障害物回避の問題を検討する。
データ駆動型エンドツーエンドディープラーニングアプローチとして,障害回避問題に取り組む。
論文 参考訳(メタデータ) (2021-03-08T13:05:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。