論文の概要: TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.14978v2
- Date: Wed, 08 Jan 2025 07:53:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 16:10:19.375376
- Title: TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models
- Title(参考訳): TS-HTFA:大規模言語モデルを用いた階層型テキストフリーアライメントによる時系列予測の改善
- Authors: Pengfei Wang, Huanran Zheng, Qi'ao Xu, Silong Dai, Yiqiao Wang, Wenjing Yue, Wei Zhu, Tianwen Qian, Xiaoling Wang,
- Abstract要約: 時系列予測の新しい手法である textbfHierarchical textbfText-textbfFree textbfAlignment (textbfTS-HTFA) を導入する。
我々は、QR分解語埋め込みと学習可能なプロンプトに基づいて、ペア化されたテキストデータを適応的な仮想テキストに置き換える。
複数の時系列ベンチマークの実験は、HTFAが最先端のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 14.411646409316624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the significant potential of large language models (LLMs) in sequence modeling, emerging studies have begun applying them to time-series forecasting. Despite notable progress, existing methods still face two critical challenges: 1) their reliance on large amounts of paired text data, limiting the model applicability, and 2) a substantial modality gap between text and time series, leading to insufficient alignment and suboptimal performance. In this paper, we introduce \textbf{H}ierarchical \textbf{T}ext-\textbf{F}ree \textbf{A}lignment (\textbf{TS-HTFA}), a novel method that leverages hierarchical alignment to fully exploit the representation capacity of LLMs while eliminating the dependence on text data. Specifically, we replace paired text data with adaptive virtual text based on QR decomposition word embeddings and learnable prompt. Furthermore, we establish comprehensive cross-modal alignment at three levels: input, feature, and output. Extensive experiments on multiple time-series benchmarks demonstrate that HTFA achieves state-of-the-art performance, significantly improving prediction accuracy and generalization.
- Abstract(参考訳): シーケンスモデリングにおける大規模言語モデル(LLM)の有意な可能性を考えると、近年の研究では時系列予測にそれらを適用し始めている。
目覚ましい進歩にもかかわらず、既存の方法はまだ2つの重要な課題に直面している。
1)大量のペアテキストデータへの依存、モデルの適用可能性の制限、
2) テキストと時系列の間には実質的なモダリティのギャップがあり, 整合性や準最適性能は不十分であった。
本稿では,LLMの表現能力を完全に活用し,テキストデータへの依存をなくし,階層的アライメントを活用する新しい手法である \textbf{H}ierarchical \textbf{T}ext-\textbf{F}ree \textbf{A}lignment (\textbf{TS-HTFA})を紹介する。
具体的には、QR分解語埋め込みと学習可能なプロンプトに基づいて、ペア化されたテキストデータを適応的な仮想テキストに置き換える。
さらに、入力、特徴、出力の3つのレベルにおいて、総合的なクロスモーダルアライメントを確立する。
複数の時系列ベンチマークにおいて、HTFAは最先端の性能を達成し、予測精度と一般化を著しく向上することを示した。
関連論文リスト
- Enhancing Time Series Forecasting via Multi-Level Text Alignment with LLMs [6.612196783595362]
大規模言語モデル(LLM)を用いた時系列予測のための多段階テキストアライメントフレームワークを提案する。
本手法は,時系列をトレンド,季節,残留成分に分解し,コンポーネント固有のテキスト表現に再プログラムする。
複数のデータセットに対する実験により,提案手法は高い解釈性を提供しながら,最先端のモデルよりも精度が高いことを示した。
論文 参考訳(メタデータ) (2025-04-10T01:02:37Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
機械生成コンテンツは、学術プラジャリズムや誤報の拡散といった課題を提起する。
これらの課題を克服するために、新しい方法論とデータセットを導入します。
人間の筆記スタイルをエミュレートするエンコーダデコーダモデルであるMhBARTを提案する。
また,PDTB前処理による談話解析を統合し,構造的特徴を符号化するモデルであるDTransformerを提案する。
論文 参考訳(メタデータ) (2024-12-17T08:47:41Z) - Text2Freq: Learning Series Patterns from Text via Frequency Domain [8.922661807801227]
Text2Freqは、周波数領域を介してテキストと時系列データを統合したモダリティモデルである。
実物価格と合成テキストのペアデータセットによる実験により,Text2Freqが最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2024-11-01T16:11:02Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
時系列予測(TSF)のための新しい適応型マルチスケール分解(AMD)フレームワークを提案する。
我々のフレームワークは時系列を複数のスケールで異なる時間パターンに分解し、MDM(Multi-Scale Decomposable Mixing)ブロックを活用する。
提案手法は,時間依存性とチャネル依存性の両方を効果的にモデル化し,マルチスケールデータ統合を改良するために自己相関を利用する。
論文 参考訳(メタデータ) (2024-06-06T05:27:33Z) - Towards Robustness of Text-to-Visualization Translation against Lexical and Phrasal Variability [27.16741353384065]
テキスト・トゥ・バイ・モデルはしばしば、質問における単語間の語彙マッチングとデータスキーマにおけるトークンに依存している。
本研究では,これまで検討されていない領域である現行のテキスト・ツー・ヴィジュア・モデルのロバスト性について検討する。
本稿では,2つの変種における入力摂動に対処するために特別に設計されたGRED(Retrieval-Augmented Generation, RAG)技術に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T16:12:50Z) - Sequential Visual and Semantic Consistency for Semi-supervised Text
Recognition [56.968108142307976]
Scene Text Recognition (STR) は、大規模なアノテートデータを必要とする課題である。
既存のSTR法の多くは、STRモデルの性能を低下させ、ドメイン差を生じさせる合成データに頼っている。
本稿では,視覚的・意味的両面から単語レベルの整合性正則化を取り入れたSTRの半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T13:00:54Z) - Recurrent Alignment with Hard Attention for Hierarchical Text Rating [6.858867989434858]
大規模言語モデル(LLM)を利用した階層型テキスト評価のための新しいフレームワークを提案する。
我々のフレームワークは、RAHA(Recurrent Alignment with Hard Attention)を取り入れています。
実験の結果,RAHAは3つの階層的テキスト評価データセットにおいて,既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-02-14T00:40:51Z) - AToM: Amortized Text-to-Mesh using 2D Diffusion [107.02696990299032]
Amortized Text-to-Mesh (AToM) は複数のテキストプロンプトに同時に最適化されたフィードフォワードフレームワークである。
AToMはトレーニングコストの約10倍の削減とともに、1秒未満で高品質なテクスチャメッシュを直接生成する。
AToMは4倍以上の精度で最先端のアモルト化アプローチを著しく上回っている。
論文 参考訳(メタデータ) (2024-02-01T18:59:56Z) - Distillation Enhanced Time Series Forecasting Network with Momentum Contrastive Learning [7.4106801792345705]
長周期時系列予測のための革新的蒸留強化フレームワークであるDE-TSMCLを提案する。
具体的には、タイムスタンプをマスクするかどうかを適応的に学習する学習可能なデータ拡張機構を設計する。
そこで本研究では,時系列のサンプル間および時間内相関を探索するために,モーメントを更新したコントラスト学習タスクを提案する。
複数のタスクからモデル損失を発生させることで、下流予測タスクの効果的な表現を学習することができる。
論文 参考訳(メタデータ) (2024-01-31T12:52:10Z) - Mlinear: Rethink the Linear Model for Time-series Forecasting [9.841293660201261]
Mlinearは、主に線形層に基づく単純だが効果的な方法である。
複数のデータセット上で広く使われている平均二乗誤差(MSE)を大幅に上回る新しい損失関数を導入する。
提案手法は,PatchTSTを336列長入力で21:3,512列長入力で29:10で有意に上回った。
論文 参考訳(メタデータ) (2023-05-08T15:54:18Z) - Multi-Modal Continual Test-Time Adaptation for 3D Semantic Segmentation [26.674085603033742]
連続テスト時間適応(CTTA)は、目標ドメインが定常ではなく時間とともに動的であることを仮定して、従来のテスト時間適応(TTA)を一般化する。
本稿では3次元セマンティックセグメンテーションのためのCTTAの新たな拡張として,Multi-Modal Continual Test-Time Adaptation (MM-CTTA)を提案する。
論文 参考訳(メタデータ) (2023-03-18T16:51:19Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Text Revision by On-the-Fly Representation Optimization [76.11035270753757]
現在の最先端手法は、これらのタスクをシーケンスからシーケンスまでの学習問題として定式化している。
並列データを必要としないテキストリビジョンのための反復的なインプレース編集手法を提案する。
テキストの単純化に関する最先端の教師付き手法よりも、競争力があり、パフォーマンスも向上する。
論文 参考訳(メタデータ) (2022-04-15T07:38:08Z) - Data-to-text Generation with Variational Sequential Planning [74.3955521225497]
非言語的な入力からテキスト出力を生成することを目的としたデータ・ツー・テキスト生成の課題について考察する。
協調的かつ有意義な方法で高レベルの情報を整理する責任を負う計画要素を付加したニューラルモデルを提案する。
我々は、計画と生成のステップをインターリーブしながら、構造化された変動モデルで逐次、潜在計画を推測する。
論文 参考訳(メタデータ) (2022-02-28T13:17:59Z) - Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data [6.463941665276371]
本稿では,MVTSデータにおける異常検出に向けて,TRL-CPC(Contrastive Predictive Coding)を用いた時系列表現学習を提案する。
まず,エンコーダ,自動回帰器,非線形変換関数を共同で最適化し,MVTSデータセットの表現を効果的に学習する。
論文 参考訳(メタデータ) (2022-02-08T04:25:29Z) - Progressively Guide to Attend: An Iterative Alignment Framework for
Temporal Sentence Grounding [53.377028000325424]
時間的文接地作業のための反復アライメントネットワーク(IA-Net)を提案する。
学習可能なパラメータを持つマルチモーダル特徴をパットすることで、非整合フレームワードペアの非整合問題を軽減する。
また、アライメントの知識を洗練させるために、各アライメントモジュールに従ってキャリブレーションモジュールを考案する。
論文 参考訳(メタデータ) (2021-09-14T02:08:23Z) - AGGGEN: Ordering and Aggregating while Generating [12.845842212733695]
本稿では,2つの明示的な文計画段階をニューラルデータ・トゥ・テキストシステムに再導入するデータ・ツー・テキスト・モデルAGGGENを提案する。
AGGGENは、入力表現とターゲットテキスト間の遅延アライメントを学習してテキストを生成すると同時に、文計画を実行する。
論文 参考訳(メタデータ) (2021-06-10T08:14:59Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
自己監督学習に基づくマルチフレーム一眼的シーンフローネットワークを導入。
自己監督学習に基づく単眼的シーンフロー法における最新の精度を観察する。
論文 参考訳(メタデータ) (2021-05-05T17:49:55Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSFは立体映像からの3次元シーン構造と動きの同時再構成のための自己教師型フレームワークである。
提案モデルでは,課題の画像の相違やシーンフローを確実に予測できることを示す。
最先端技術よりも優れた一般化を実現し、目に見えない領域に迅速かつ堅牢に適応する。
論文 参考訳(メタデータ) (2020-06-19T17:28:07Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
ハードコントラストテキスト生成のための新しい挿入ベースアプローチであるPOINTERを提案する。
提案手法は,既存のトークン間で段階的に新しいトークンを並列に挿入することによって動作する。
結果として生じる粗大な階層構造は、生成プロセスを直感的で解釈可能である。
論文 参考訳(メタデータ) (2020-05-01T18:11:54Z) - Bottom-Up Temporal Action Localization with Mutual Regularization [107.39785866001868]
TALの最先端の解決策は、3つの行動指示相のフレームレベルの確率を評価することである。
学習手順を相互に規則化するための2つの規則化用語を導入する。
実験は2つの人気のTALデータセット、THUMOS14とActivityNet1.3で行われている。
論文 参考訳(メタデータ) (2020-02-18T03:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。