Enhancing Aspect-based Sentiment Analysis in Tourism Using Large Language Models and Positional Information
- URL: http://arxiv.org/abs/2409.14997v1
- Date: Mon, 23 Sep 2024 13:19:17 GMT
- Title: Enhancing Aspect-based Sentiment Analysis in Tourism Using Large Language Models and Positional Information
- Authors: Chun Xu, Mengmeng Wang, Yan Ren, Shaolin Zhu,
- Abstract summary: This paper proposes an aspect-based sentiment analysis model, ACOS_LLM, for Aspect-Category--Sentiment Quadruple Extraction (ACOSQE)
The model comprises two key stages: auxiliary knowledge generation and ACOSQE.
Results demonstrate the model's superior performance, with an F1 improvement of 7.49% compared to other models on the tourism dataset.
- Score: 14.871979025512669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-Based Sentiment Analysis (ABSA) in tourism plays a significant role in understanding tourists' evaluations of specific aspects of attractions, which is crucial for driving innovation and development in the tourism industry. However, traditional pipeline models are afflicted by issues such as error propagation and incomplete extraction of sentiment elements. To alleviate this issue, this paper proposes an aspect-based sentiment analysis model, ACOS_LLM, for Aspect-Category-Opinion-Sentiment Quadruple Extraction (ACOSQE). The model comprises two key stages: auxiliary knowledge generation and ACOSQE. Firstly, Adalora is used to fine-tune large language models for generating high-quality auxiliary knowledge. To enhance model efficiency, Sparsegpt is utilized to compress the fine-tuned model to 50% sparsity. Subsequently, Positional information and sequence modeling are employed to achieve the ACOSQE task, with auxiliary knowledge and the original text as inputs. Experiments are conducted on both self-created tourism datasets and publicly available datasets, Rest15 and Rest16. Results demonstrate the model's superior performance, with an F1 improvement of 7.49% compared to other models on the tourism dataset. Additionally, there is an F1 improvement of 0.05% and 1.06% on the Rest15 and Rest16 datasets, respectively.
Related papers
- Enhanced Infield Agriculture with Interpretable Machine Learning Approaches for Crop Classification [0.49110747024865004]
This research evaluates four different approaches for crop classification, namely traditional ML with handcrafted feature extraction methods like SIFT, ORB, and Color Histogram; Custom Designed CNN and established DL architecture like AlexNet; transfer learning on five models pre-trained using ImageNet.
Xception outperformed all of them in terms of generalization, achieving 98% accuracy on the test data, with a model size of 80.03 MB and a prediction time of 0.0633 seconds.
arXiv Detail & Related papers (2024-08-22T14:20:34Z) - Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach [0.0]
This study introduces a parameter-efficient network for emotion classification.
The network incorporates a graph hierarchy constructed from bottom-up at various abstraction levels.
It achieves mean F1 scores of 96.82% (valence) and 95.62% (arousal) in subject-dependent tests.
arXiv Detail & Related papers (2024-08-09T12:32:12Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Automated Root Causing of Cloud Incidents using In-Context Learning with
GPT-4 [23.856839017006386]
Root Cause Analysis (RCA) plays a pivotal role in the incident diagnosis process for cloud services.
GPT-4 model's immense size presents challenges when trying to fine-tune it on user data.
We propose an in-context learning approach for automated root causing, which eliminates the need for fine-tuning.
arXiv Detail & Related papers (2024-01-24T21:02:07Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive data.
We have utilized this framework to create Prithvi, a transformer-based foundational model pre-trained on more than 1TB of multispectral satellite imagery.
arXiv Detail & Related papers (2023-10-28T10:19:55Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
We propose an effective paradigm for generating large-scale data for learning.
We apply 1200+ photo-realistic environments from HM3D and Gibson datasets and synthesizes 4.9 million instruction trajectory pairs.
Thanks to our large-scale dataset, the performance of an existing agent can be pushed up (+11% absolute with regard to previous SoTA) to a significantly new best of 80% single-run success rate on the R2R test split by simple imitation learning.
arXiv Detail & Related papers (2023-07-28T16:03:28Z) - GENEVA: Benchmarking Generalizability for Event Argument Extraction with
Hundreds of Event Types and Argument Roles [77.05288144035056]
Event Argument Extraction (EAE) has focused on improving model generalizability to cater to new events and domains.
Standard benchmarking datasets like ACE and ERE cover less than 40 event types and 25 entity-centric argument roles.
arXiv Detail & Related papers (2022-05-25T05:46:28Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z) - Tourism Demand Forecasting: An Ensemble Deep Learning Approach [4.516340427736994]
We use historical tourist arrival data, economic variable data and search intensity index (SII) data to forecast tourist arrivals in Beijing.
Our proposed B-SAKE approach outperforms benchmark models in terms of level accuracy, directional accuracy and even statistical significance.
Both bagging and stacked autoencoder can effectively alleviate the challenges brought by tourism big data and improve the forecasting performance of the models.
arXiv Detail & Related papers (2020-02-19T02:23:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.