論文の概要: AIM 2024 Sparse Neural Rendering Challenge: Methods and Results
- arxiv url: http://arxiv.org/abs/2409.15045v1
- Date: Mon, 23 Sep 2024 14:17:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:53:59.763588
- Title: AIM 2024 Sparse Neural Rendering Challenge: Methods and Results
- Title(参考訳): AIM 2024 Sparse Neural Rendering Challenge: Methods and Results
- Authors: Michal Nazarczuk, Sibi Catley-Chandar, Thomas Tanay, Richard Shaw, Eduardo Pérez-Pellitero, Radu Timofte, Xing Yan, Pan Wang, Yali Guo, Yongxin Wu, Youcheng Cai, Yanan Yang, Junting Li, Yanghong Zhou, P. Y. Mok, Zongqi He, Zhe Xiao, Kin-Chung Chan, Hana Lebeta Goshu, Cuixin Yang, Rongkang Dong, Jun Xiao, Kin-Man Lam, Jiayao Hao, Qiong Gao, Yanyan Zu, Junpei Zhang, Licheng Jiao, Xu Liu, Kuldeep Purohit,
- Abstract要約: 本稿では,ECCV 2024と共同で開催されるAIM(Advanceds in Image Manipulation)ワークショップの一部であるスパースニューラルレンダリングの課題についてレビューする。
この課題は、スパース画像から多様なシーンを合成する新しいカメラビューを作ることである。
参加者は、Pak Signal-to-Noise Ratio (PSNR) 測定によって測定された地中真実像に対する客観的忠実度を最適化するよう依頼される。
- 参考スコア(独自算出の注目度): 64.19942455360068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper reviews the challenge on Sparse Neural Rendering that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2024. This manuscript focuses on the competition set-up, the proposed methods and their respective results. The challenge aims at producing novel camera view synthesis of diverse scenes from sparse image observations. It is composed of two tracks, with differing levels of sparsity; 3 views in Track 1 (very sparse) and 9 views in Track 2 (sparse). Participants are asked to optimise objective fidelity to the ground-truth images as measured via the Peak Signal-to-Noise Ratio (PSNR) metric. For both tracks, we use the newly introduced Sparse Rendering (SpaRe) dataset and the popular DTU MVS dataset. In this challenge, 5 teams submitted final results to Track 1 and 4 teams submitted final results to Track 2. The submitted models are varied and push the boundaries of the current state-of-the-art in sparse neural rendering. A detailed description of all models developed in the challenge is provided in this paper.
- Abstract(参考訳): 本稿では,ECCV 2024と共同で開催されるAIM(Advanceds in Image Manipulation)ワークショップの一部であるスパースニューラルレンダリングの課題についてレビューする。
本書は,コンペのセットアップ,提案手法,それぞれの成果に焦点を当てている。
この課題は、スパース画像から多様なシーンを合成する新しいカメラビューを作ることである。
間隔の異なる2つのトラックで構成され、トラック1の3ビュー(非常にスパース)とトラック2の9ビュー(スパース)である。
参加者は、Pak Signal-to-Noise Ratio (PSNR) 測定によって測定された地中真実像に対する客観的忠実度を最適化するよう依頼される。
両方のトラックで、新しく導入されたスパースレンダリング(SpaRe)データセットと、人気のあるDTU MVSデータセットを使用します。
この課題では、5つのチームがトラック1に最終結果を提出し、4つのチームがトラック2に最終結果を提出した。
提出されたモデルは様々であり、スパースニューラルネットワークレンダリングにおける現在の最先端の境界を押し上げる。
本論文では,本課題で開発されたモデルについて詳述する。
関連論文リスト
- Technical Report for CVPR 2024 WeatherProof Dataset Challenge: Semantic Segmentation on Paired Real Data [9.128113804878959]
この課題は、世界中の様々な天候によって劣化した画像のセマンティックセグメンテーションを目標とする。
我々は、インターンイメージ(InternImage)という訓練済みの大規模視覚基盤モデルを導入し、異なるレベルのノイズを持つ画像を用いて訓練した。
その結果、45.1mIOUで2位となり、他の優勝者より少なかった。
論文 参考訳(メタデータ) (2024-06-09T17:08:07Z) - NTIRE 2024 Challenge on Image Super-Resolution ($\times$4): Methods and Results [126.78130602974319]
画像の超高解像度化に関するNTIRE 2024の課題(4ドル)をレビューする。
この課題は、低解像度(LR)入力から4倍の倍率で対応する高解像度(HR)画像を生成することである。
この挑戦の目的は、最も先進的なSR性能を持つ設計/解決を得ることである。
論文 参考訳(メタデータ) (2024-04-15T13:45:48Z) - NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results [173.32437855731752]
この課題はCVPR 2022と共同でNTIRE(New Trends in Image Restoration and Enhancement)ワークショップの一環として行われた。
この課題は、複数の低ダイナミックレンジ(LDR)観測からHDR画像を推定することを目的としている。
論文 参考訳(メタデータ) (2022-05-25T10:20:06Z) - NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and
Results [56.932867490888015]
本稿では,CVPR 2021と共同で開催されているニュートレンド・イメージ・リカバリ・エンハンスメント(NTIRE)ワークショップ(New Trends in Image Restoration and Enhancement, NTIRE)におけるハイダイナミックレンジイメージングの課題について概説する。
この課題は、1つまたは複数の低ダイナミックレンジ(LDR)観測からHDR画像を推定することを目的としている。
論文 参考訳(メタデータ) (2021-06-02T19:45:16Z) - An Empirical Study of Vehicle Re-Identification on the AI City Challenge [19.13038665501964]
Track2は、現実世界のデータと合成データの両方を扱う車両再識別(ReID)タスクである。
主に、この課題におけるトレーニングデータ、教師なしドメイン適応(UDA)トレーニング、後処理、モデルアンサンブルの4点に注目します。
以上の手法により, 最終的に0.7445mAPのスコアが得られた。
論文 参考訳(メタデータ) (2021-05-20T12:20:52Z) - LID 2020: The Learning from Imperfect Data Challenge Results [242.86700551532272]
Imperfect Dataワークショップからの学習は、新しいアプローチの開発に刺激を与え、促進することを目的としている。
我々は、弱教師付き学習環境における最先端のアプローチを見つけるために、3つの課題を編成する。
この技術的レポートは、課題のハイライトを要約している。
論文 参考訳(メタデータ) (2020-10-17T13:06:12Z) - NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and
Results [181.2861509946241]
本稿は、新たに導入されたデータセットに焦点をあてて、実画像の復調に関するNTIRE 2020の課題をレビューする。
課題は、SIDDベンチマークに基づく実際の画像のデノゲーションに関する以前のNTIRE 2019チャレンジの新バージョンである。
論文 参考訳(メタデータ) (2020-05-08T15:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。