論文の概要: Enabling Tensor Decomposition for Time-Series Classification via A Simple Pseudo-Laplacian Contrast
- arxiv url: http://arxiv.org/abs/2409.15200v1
- Date: Mon, 23 Sep 2024 16:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:02:53.168983
- Title: Enabling Tensor Decomposition for Time-Series Classification via A Simple Pseudo-Laplacian Contrast
- Title(参考訳): 簡易擬似ラプラシアンコントラストを用いたテンソル分解法による時系列分類
- Authors: Man Li, Ziyue Li, Lijun Sun, Fugee Tsung,
- Abstract要約: 本稿では, Pseudo Laplacian Contrast (PLC) テンソル分解フレームワークを提案する。
データ拡張とラプラシアンのクロスビューを統合し、クラス認識表現の抽出を可能にする。
様々なデータセットの実験は、我々のアプローチの有効性を実証している。
- 参考スコア(独自算出の注目度): 26.28414569796961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor decomposition has emerged as a prominent technique to learn low-dimensional representation under the supervision of reconstruction error, primarily benefiting data inference tasks like completion and imputation, but not classification task. We argue that the non-uniqueness and rotation invariance of tensor decomposition allow us to identify the directions with largest class-variability and simple graph Laplacian can effectively achieve this objective. Therefore we propose a novel Pseudo Laplacian Contrast (PLC) tensor decomposition framework, which integrates the data augmentation and cross-view Laplacian to enable the extraction of class-aware representations while effectively capturing the intrinsic low-rank structure within reconstruction constraint. An unsupervised alternative optimization algorithm is further developed to iteratively estimate the pseudo graph and minimize the loss using Alternating Least Square (ALS). Extensive experimental results on various datasets demonstrate the effectiveness of our approach.
- Abstract(参考訳): テンソル分解は、再構成誤差の監督の下で低次元表現を学習する際、顕著な手法として出現し、主に完了や計算などのデータ推論タスクに役立っているが、分類タスクではない。
テンソル分解の非特異性と回転不変性により、最大のクラス変数を持つ方向を特定でき、単純グラフ Laplacian はこの目的を効果的に達成できると主張している。
そこで本研究では,データ拡張とクロスビューラプラシアンを統合したPseudo Laplacian Contrast(PLC)テンソル分解フレームワークを提案する。
さらに、擬似グラフを反復的に推定し、Alternating Least Square (ALS) を用いて損失を最小限に抑えるために、教師なしの代替最適化アルゴリズムを開発した。
各種データセットに対する大規模な実験結果から,本手法の有効性が示された。
関連論文リスト
- Efficient Diffusion as Low Light Enhancer [63.789138528062225]
RATR(Reflectance-Aware Trajectory Refinement)は、イメージの反射成分を用いて教師の軌跡を洗練するための、シンプルで効果的なモジュールである。
textbfReDDiT (textbfDistilled textbfTrajectory) は低照度画像強調(LLIE)に適した効率的で柔軟な蒸留フレームワークである。
論文 参考訳(メタデータ) (2024-10-16T08:07:18Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable
Novel View Synthesis [90.03590032170169]
内在性ニューラルレンダリング法に内在性分解を導入した内在性ニューラルレイディアンス場(IntrinsicNeRF)を提案する。
そこで,本研究では,オブジェクト固有・ルームスケールシーンと合成・実単語データの両方を用いて,一貫した本質的な分解結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-02T22:45:11Z) - Supervised Dimensionality Reduction and Classification with
Convolutional Autoencoders [1.1164202369517053]
畳み込みオートエンコーダを組み合わせることで、教師付き次元の減少と予測を同時に生成する。
結果として得られるラテント空間は、伝統的な解釈可能な分類アルゴリズムを改善するために利用することができる。
提案手法は, 生成した潜在空間を通してのデータ構造だけでなく, 分類行動についても, 高度な説明可能性を導入している。
論文 参考訳(メタデータ) (2022-08-25T15:18:33Z) - Fast and Provable Tensor Robust Principal Component Analysis via Scaled
Gradient Descent [30.299284742925852]
本稿では、テンソルロバスト主成分分析(RPCA)に取り組む。
希少な腐敗によって汚染された観測から低ランクのテンソルを回収することを目的としている。
提案アルゴリズムは, 最先端行列やテンソルRPCAアルゴリズムよりも, より優れた, よりスケーラブルな性能を実現する。
論文 参考訳(メタデータ) (2022-06-18T04:01:32Z) - End-to-end reconstruction meets data-driven regularization for inverse
problems [2.800608984818919]
本稿では,不適切な逆問題に対するエンド・ツー・エンドの再構成演算子を学習するための教師なしアプローチを提案する。
提案手法は,古典的変分フレームワークと反復的アンローリングを組み合わせたものである。
我々は,X線CT(Computerd tomography)の例で,最先端の教師なし手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-07T12:05:06Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Alternating minimization algorithms for graph regularized tensor
completion [8.26185178671935]
我々は、低ランクテンソル完備化(LRTC)に対するカノニカルポリアディック(CP)分解法を考える。
グラフ正規化の使用にはLRTCの学習精度のメリットが伴うが、同時に結合グラフラプラシア語を誘導する。
基礎となるCP分解モデルにおけるブロック構造を利用して, 効率の良い同期最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-28T23:20:49Z) - Robust Tensor Decomposition for Image Representation Based on
Generalized Correntropy [37.968665739578185]
一般化したコレントロピー基準(Corr-Tensor)を用いた新しい頑健なテンソル分解法を提案する。
ラグランジュ乗算法は、一般化されたコレントロピー目的関数を反復的に効果的に最適化するために用いられる。
実験により,提案手法は顔再構成における再構成誤差を著しく低減し,手書き文字認識と顔画像クラスタリングの精度を向上することを示した。
論文 参考訳(メタデータ) (2020-05-10T08:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。