MedCodER: A Generative AI Assistant for Medical Coding
- URL: http://arxiv.org/abs/2409.15368v1
- Date: Wed, 18 Sep 2024 19:36:33 GMT
- Title: MedCodER: A Generative AI Assistant for Medical Coding
- Authors: Krishanu Das Baksi, Elijah Soba, John J. Higgins, Ravi Saini, Jaden Wood, Jane Cook, Jack Scott, Nirmala Pudota, Tim Weninger, Edward Bowen, Sanmitra Bhattacharya,
- Abstract summary: We introduce MedCodER, a Generative AI framework for automatic medical coding.
MedCodER achieves a micro-F1 score of 0.60 on International Classification of Diseases (ICD) code prediction.
We present a new dataset containing medical records annotated with disease diagnoses, ICD codes, and supporting evidence texts.
- Score: 3.7153274758003967
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical coding is essential for standardizing clinical data and communication but is often time-consuming and prone to errors. Traditional Natural Language Processing (NLP) methods struggle with automating coding due to the large label space, lengthy text inputs, and the absence of supporting evidence annotations that justify code selection. Recent advancements in Generative Artificial Intelligence (AI) offer promising solutions to these challenges. In this work, we introduce MedCodER, a Generative AI framework for automatic medical coding that leverages extraction, retrieval, and re-ranking techniques as core components. MedCodER achieves a micro-F1 score of 0.60 on International Classification of Diseases (ICD) code prediction, significantly outperforming state-of-the-art methods. Additionally, we present a new dataset containing medical records annotated with disease diagnoses, ICD codes, and supporting evidence texts (https://doi.org/10.5281/zenodo.13308316). Ablation tests confirm that MedCodER's performance depends on the integration of each of its aforementioned components, as performance declines when these components are evaluated in isolation.
Related papers
- GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs)
The methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon.
The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98%.
arXiv Detail & Related papers (2024-05-31T02:53:22Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - A Two-Stage Decoder for Efficient ICD Coding [10.634394331433322]
We propose a two-stage decoding mechanism to predict ICD codes.
At first, we predict the parent code and then predict the child code based on the previous prediction.
Experiments on the public MIMIC-III data set show that our model performs well in single-model settings.
arXiv Detail & Related papers (2023-05-27T17:25:13Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
We reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models.
We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation.
We present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models.
arXiv Detail & Related papers (2023-04-21T11:54:44Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction
from Clinical Notes by Machines [0.42641920138420947]
We present our Read, Attend, and Code (RAC) model for learning the medical code assignment mappings.
RAC establishes a new state of the art (SOTA) considerably outperforming the current best Macro-F1 by 18.7%.
This new milestone marks a meaningful step toward fully autonomous medical coding (AMC) in machines.
arXiv Detail & Related papers (2021-07-10T06:01:58Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Dilated Convolutional Attention Network for Medical Code Assignment from
Clinical Text [19.701824507057623]
This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment.
It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size.
arXiv Detail & Related papers (2020-09-30T11:55:58Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
Clinical trials are essential for drug development but often suffer from expensive, inaccurate and insufficient patient recruitment.
DeepEnroll is a cross-modal inference learning model to jointly encode enrollment criteria (tabular data) into a shared latent space for matching inference.
arXiv Detail & Related papers (2020-01-22T17:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.