Bone: Block-Affine Adaptation of Large Language Models
- URL: http://arxiv.org/abs/2409.15371v4
- Date: Fri, 22 Nov 2024 10:40:35 GMT
- Title: Bone: Block-Affine Adaptation of Large Language Models
- Authors: Jiale Kang,
- Abstract summary: Low-Rank Adaptation (LoRA) has achieved remarkable training results by freezing the original weights and training only low-rank matrices.
This paper introduces a novel PEFT technique distinct from LoRA, called Block-Affine Adaptation (Bone)
Bone significantly reduces memory usage and achieves faster computation.
- Score: 0.0
- License:
- Abstract: Low-Rank Adaptation (LoRA) has achieved remarkable training results by freezing the original weights and training only low-rank matrices, establishing itself as the predominant fine-tuning method for LLMs. In pursuit of performance closer to full-parameter training, a series of LoRA variants have emerged, such as LoRA+, PISSA, Olora, and LoRA-GA. This paper introduces a novel PEFT technique distinct from LoRA, called Block-Affine Adaptation (Bone). By dividing the original weights into multiple subspaces that share a single matrix for weight updates, Bone simplifies the process by requiring the trainable matrix to be initialized to zero, eliminating the need for complex initialization as in some LoRA variants. Compared to LoRA, Bone significantly reduces memory usage and achieves faster computation. Evaluation of both NLU and NLG tasks demonstrates that Bone substantially outperforms LoRA and its variants. Inspired by Pissa, we further proposed the ``Weight Guide'' theory to better utilize the information from the original weights. By integrating ``Weight Guide'' with Bone, we developed a new structure called Block-Affine Transformation (Bat), and ablation experiments confirmed the effectiveness of ``Weight Guide''.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - RandLoRA: Full-rank parameter-efficient fine-tuning of large models [46.25124374446935]
Low-Rank Adaptation (LoRA) and its variants have shown impressive results in reducing the number of trainable parameters and memory requirements of large transformer networks.
However, the low-rank nature of the weight update inherently limits the representation power of fine-tuned models.
This paper introduces RandLoRA, a method that performs full-rank updates using a learned linear combinations of low-rank, non-trainable random matrices.
arXiv Detail & Related papers (2025-02-03T01:59:45Z) - IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
We propose IntLoRA, to push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models.
IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting.
arXiv Detail & Related papers (2024-10-29T05:50:17Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models is resource-intensive and laborious.
One widely adopted PEFT technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights.
NEAT introduces a lightweight neural network that takes pre-trained weights as input and learns a nonlinear transformation to approximate cumulative weight updates.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
We show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of over parameterization without the computational burdens.
We demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models.
arXiv Detail & Related papers (2024-06-06T14:29:49Z) - OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models [0.0]
Low-Rank Adaptation (LoRA) has emerged as a promising method to mitigate these issues.
OLoRA significantly accelerates the convergence of LLM training.
OLoRA exhibits improved performance compared to standard LoRA across a variety of language modeling tasks.
arXiv Detail & Related papers (2024-06-03T20:37:27Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers.
This paper presents the RunLoRA framework for efficient implementations of LoRA.
Experiments show up to 28% speedup on language modeling networks.
arXiv Detail & Related papers (2023-12-06T10:54:34Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.